Patents Examined by Fitwi Y Hailegiorgis
  • Patent number: 11973553
    Abstract: Proposed is a mobile router for transmitting and receiving millimeter waves to and from a base station, the mobile router including a first member including an antenna array configured to transmit and receive the millimeter waves, a second member, and an angle adjustment part connecting the first member to the second member, wherein the angle adjustment part is formed such that the first member and the second member are adjusted at a predetermined angle so as to allow the antenna array to transmit and receive the millimeter waves at a specific angle. The first member including the antenna array is configured to be unfolded at a predetermined angle with respect to the second member in order to transmit and receive a 5G millimeter wave beam signal at a specific angle, and thus a user can optimally adjust the transmission/reception sensitivity of 5G millimeter waves.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: April 30, 2024
    Assignee: GCT RESEARCH, INC
    Inventors: Jeong Min Kim, Hyungkoo Lee
  • Patent number: 11968009
    Abstract: There are provided mechanisms for generating a beam set. A method is performed by a radio transceiver device. The method comprises generating the beam set as combination of at least two beam pairs. Each beam pair is formed by two respective beams with orthogonal polarizations. The two beams have their pointing directions separated by a first angular separation delta1>0. Neighbouring beam pairs have their pointing directions separated by a second angular separation delta2>0. The first angular separation delta1 is a function of the second angular separation delta2.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 23, 2024
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Henrik Jidhage
  • Patent number: 11968010
    Abstract: Systems and methods for beamforming of broadcast and synchronization channels are provided. In one example, a system includes a BBU, RU(s) communicatively coupled to the BBU, and antennas communicatively coupled to the RU(s). Each RU is communicatively coupled to a respective subset of antennas. The BBU, RU(s), and antennas implement a base station for wirelessly communicating with UEs. The base station is configured to map a synchronization signal to the antennas during a sequence of time periods, transmit the synchronization signal via each respective subset of antennas with a first antenna beam pattern during a first time period of the sequence of time periods, and transmit the synchronization signal via each respective subset of the antennas with a second antenna beam pattern during a second time period of the sequence of time periods. The first antenna beam pattern is different than the second antenna beam pattern.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: April 23, 2024
    Assignee: CommScope Technologies LLC
    Inventor: Boaz Pianka
  • Patent number: 11968011
    Abstract: A multi-channel multi-phase digital beamforming method and apparatus is provided. The multi-channel multi-phase digital beamforming method includes following steps: S1: pre-configuring a delay filtering coefficient storage table; S2: calculating a filter coefficient and a weighting coefficient; and S3: performing weighted synthesis and filtering processing on a multi-phase signal to form a multi-phase digital beam. When a data rate of an input signal changes, the multi-channel multi-phase digital beamforming method can perform weighted synthesis for the signal at different sampling rates by changing a quantity of signal phases without changing a processing architecture. Based on a multi-phase finite impulse response (FIR) filtering technology, a fractional multiple delay processing architecture that can flexibly adapt to a plurality of phase quantities of the input signal is proposed.
    Type: Grant
    Filed: June 29, 2023
    Date of Patent: April 23, 2024
    Inventor: Jun Tang
  • Patent number: 11962806
    Abstract: A decoding unit decodes data corresponding to an N×M array of quantized coefficients from a bit stream. An inverse quantization unit derives orthogonal transform coefficients from the N×M array of quantized coefficients by using at least a quantization matrix. An inverse orthogonal transform unit performs inverse orthogonal transform on the orthogonal transform coefficients generated by the inverse quantization unit to generate prediction residuals corresponding to a block of a P×Q array of pixels. An inverse quantization unit derives the orthogonal transform coefficients by using at least a quantization matrix of an N×M array of elements, and the inverse orthogonal transform unit generates prediction residuals for the P×Q array of pixels having a size larger than the N×M array.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: April 16, 2024
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masato Shima
  • Patent number: 11956059
    Abstract: A communication system may include an access point (AP), a user equipment (UE), and a communication path between the AP and the UE having a series of reconfigurable intelligent surfaces (RIS's). Each RIS may have a first beam pointing to a previous node and a second beam pointing to a next node in the communication path. Beams of routing RIS's and a beam from an end user RIS towards a last routing RIS may be set during calibration. The UE may perform beam discovery with the end user RIS. The UE and the AP may convey wireless data via reflections off each of the RIS's in the communication path. The beam of the end user RIS may be updated to track the UE device while the other the beams remain fixed. The beams may be calibrated using retroreflection and beam variation for each pair of RIS's up the communication path.
    Type: Grant
    Filed: September 14, 2022
    Date of Patent: April 9, 2024
    Assignee: Apple Inc.
    Inventors: Stefan Meyer, Jan K Ellenbeck, Bertram R Gunzelmann
  • Patent number: 11956037
    Abstract: According to an example aspect of the present invention, there is provided a method, including receiving, by a wireless device of a first wireless network, a control request frame from a second access node of a second wireless network, the control request frame including at least a number of nulls for the wireless device. The wireless device selects a subset of antenna elements, wherein the number of antenna elements is in accordance with the number of nulls for the wireless device, and the antenna elements are selected based on reception powers of antenna elements of at least a frame from a first access node of the first wireless network and/or the second access node of the second wireless network. The wireless device transmits a control response frame with the selected antenna elements, and a data frame to the first access node with the selected antenna elements.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 9, 2024
    Assignee: Nokia Technologies Oy
    Inventors: Adrian Garcia Rodriguez, David Lopez-Perez, Lorenzo Galati Giordano
  • Patent number: 11956052
    Abstract: Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may identify a first throughput on a first beam of the UE, wherein the first beam is associated with a first number of antenna elements. The UE may identify an estimated maximum throughput of the UE. The UE may communicate, based at least in part on the first throughput being greater than the estimated maximum throughput, using a second beam, the second beam having a second throughput that is greater than the estimated maximum throughput, and the second beam being associated with a second number of antenna elements lesser than the first number of antenna elements. Numerous other aspects are described.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: April 9, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Jun Zhu, Mihir Vijay Laghate, Leena Zacharias, Raghu Narayan Challa
  • Patent number: 11942981
    Abstract: A receiver includes: a correlation value calculation unit calculating a first cross-correlation function between a received signal, having a preamble spread with an up chirp and a down chirp, and the up chirp and calculating a second cross-correlation function between the received signal and the down chirp; a power value calculation unit calculating first and second power values of the first and second cross-correlation functions; a correlation power memory storing the first and second power values at each sample timing for one period of a spread code; a threshold determination unit determining first and second estimated timings from the first and second power values for one period of the spread code, respectively; and an estimation unit estimating a spread code timing of a transmitter using the first and second estimated timings, and performing coarse estimation of a frequency offset with respect to the transmitter.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: March 26, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Megumi Fukuma, Masatsugu Higashinaka
  • Patent number: 11929564
    Abstract: Provided is an electronic device comprising an antenna for 5G communication according to the present invention. The electronic device comprises an array antenna which is implemented as a multi-layer substrate inside the electronic device and includes multiple antenna elements. Each of the multiple antenna elements of the array antenna may comprise: a patch antenna disposed on a specific layer of the multi-layer substrate and including a first patch and a second patch which are spaced a predetermined distance apart from each other; and a ground layer disposed under the patch antenna and having a slot. Meanwhile, the first patch and the second patch may be connected to the ground layer through multiple vias, and the multiple vias may be arranged in the longitudinal direction of the slot while being adjacent to the slot.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: March 12, 2024
    Assignee: LG ELECTRONICS INC.
    Inventor: Seungmin Woo
  • Patent number: 11929802
    Abstract: An unmanned aerial vehicle can be configured to adjust a beam direction, provide path information, act as a base station, act as a cluster head, include an improved directional antenna or array of directional antennas, communicate in a collaboration using belief propagation, receive communications from a serving station aiding in navigation or improved signal performance, or the like.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: March 12, 2024
    Assignee: Apple Inc.
    Inventors: Feng Xue, Mustafa Akdeniz, Seong-Youp John Suh, Shu-Ping Yeh, Eduardo Alban, Philippe Auzas, Jonathan Byrne, Mark Davis, David Gomez Gutierrez, Timo Huusari, Bradley Alan Jackson, Ranganadh Karella, Sreenivas Kasturi, Mengkun Ke, Ching-Yu Liao, Tiefeng Shi, Daniel Tong, Candy Yiu
  • Patent number: 11929804
    Abstract: Methods, systems, and devices for wireless communications are described. A first wireless device may be configured to transmit, to a second wireless device, one or more orbital angular momentum (OAM) signals in accordance with a set of radial codeword sequences associated with a polynomial radial codeword configuration, where the one or more OAM signals are transmitted based on a first value of a polynomial term for the polynomial radial codeword configuration. The first wireless device may receive, from the second wireless device on the one or more OAM signals, a feedback message indicating a second value of the polynomial term. The first wireless device may then transmit, to the second wireless device, one or more additional OAM signals in accordance with the set of radial codeword sequences and based on the second value for the polynomial term.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: March 12, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Danlu Zhang, Juergen Cezanne, Junyi Li
  • Patent number: 11923619
    Abstract: Aspects of disclosure relate to beam steering at a multi-antenna device. The device receives an activation signal to activate one or more input ports of a Butler matrix and outputs signals from all output ports of the Butler matrix based on activation of the one or more input ports. The signals output from the output ports have varying phase shifts relative to each other. Moreover, the device phase shifts the signals output from the output ports via a plurality of phase shifters respectively coupled to the output ports. The phase shifted signals have further varying phase shifts relative to each other and a phase difference between adjacent phase shifted signals. Each one of a plurality of antenna elements at the device receives a phase shifted signal from an associated phase shifter and outputs a beam based on the phase shifted signal received from the associated phase shifter.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: March 5, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Idan Michael Horn, Shay Landis, Assaf Touboul
  • Patent number: 11916584
    Abstract: A system for detecting whether an antenna has been disconnected from a coverage extension system is disclosed. The system for detecting disconnected antennas includes an antenna receiving signals from a base station and noise from the environment; a coupler; a transceiver; a power sensor to measure the power intensity of the noise; a controller; and a wired connector, electrically connecting the output of the antenna to the coupler, for carrying said signals and white noise from the antenna to the coupler. The coupler outputs part of the signal and noise to the power sensor and another part of the signal and noise to the transceiver. The controller detects changes in the power intensity of the noise to detect whether the antenna has been disconnected.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: February 27, 2024
    Assignee: Fiplex Communications, Inc.
    Inventor: Ricardo Matias de Goycoechea
  • Patent number: 11909852
    Abstract: A method includes, at a first node: transmitting a first calibration signal at a first time-of-departure measured by the first node; and transmitting a second calibration signal at a second time-of-departure measured by the first node. The method also includes, at a second node: receiving the first calibration signal at a first time-of-arrival measured by the second node; and receiving the second calibration signal at a second time-of-arrival measured by the second node. The method further includes: defining a first calibration point and a second calibration point in a set of calibration points, each calibration point comprising a time-of-departure and a time-of-arrival of each calibration signal; calculating a regression on the set of calibration points; and calculating a frequency offset between the first node and the second node based on the first regression.
    Type: Grant
    Filed: February 23, 2023
    Date of Patent: February 20, 2024
    Inventors: Philip A. Kratz, Daniel M. Jacker, Mainak Chowdhury, Alexander Hooshmand
  • Patent number: 11901961
    Abstract: A method, for calibrating signal processing devices in an interface circuit coupled to a host device, comprises: negotiating with the host device in a link up process about an operation mode for the interface circuit to operate in a calibration procedure; and calibrating a characteristic value of a first signal processing device and a characteristic value of a second signal processing device in the calibration procedure. The first signal processing device is disposed on a receiving signal processing path and configured to process a received signal and the second signal processing device is disposed on a transmitting signal processing path and configured to process a transmitting signal, and the interface circuit is configured to operate based on the operation mode in the calibration procedure.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: February 13, 2024
    Assignee: Silicon Motion, Inc.
    Inventor: Fu-Jen Shih
  • Patent number: 11894892
    Abstract: Antenna systems are provided. An antenna system includes a beamforming array having a plurality of vertical columns of radiating elements that are each configured to transmit at least three antenna beams per polarization. Moreover, the antenna system includes a beamforming radio having a plurality of radio frequency ports per polarization that are coupled to and fewer than the vertical columns.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: February 6, 2024
    Assignee: CommScope Technologies LLC
    Inventors: Mikko Junttila, Hangsheng Wen, Ligang Wu, Björn Lindmark, XiaoHua Hou, Martin L. Zimmerman
  • Patent number: 11881888
    Abstract: An electronics (100, 200) including an electrical isolation is provided. The electronics (100, 200) include a bidirectional isolation circuit (110, 210) separating a first portion (100a, 200a) from a second portion (100, 200b) and a bus transceiver switch (120b, 220b) disposed in the second portion (100b, 200b). The bus transceiver switch (120b, 220b) is communicatively coupled to the bidirectional isolation circuit (110, 210). The bus transceiver switch (120b, 220b) receives from the bidirectional isolation circuit (110, 210) a communication control signal provided by the first portion (100a, 200a).
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: January 23, 2024
    Assignee: Micro Motion, Inc.
    Inventor: Brian T. Smith
  • Patent number: 11876574
    Abstract: The present disclosure aims to provide a power wiring network apparatus capable of constructing a highly portable power wiring network, without the need to maintain infrastructure. A power wiring network apparatus of the present disclosure includes circuit elements each including a first connector, a second connector, and a conductive portion electrically connecting the first connector and the second connector. The circuit elements include energy harvesting elements as circuit elements capable of outputting power generated by energy harvesting and load elements as circuit elements capable of consuming inputted power. The circuit elements are mechanically and electrically attachable via the first connector and second connector. At least some energy harvesting elements and load elements are capable of power line data communication via a power line including the first connector, second connector, and conductive portion.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: January 16, 2024
    Assignee: ZEON CORPORATION
    Inventors: Masayoshi Yoshida, Naomi Shiga
  • Patent number: 11870522
    Abstract: A beam tracking method for mmWave communication method is disclosed. An angle estimation algorithm is performed on all user equipments (UEs) through a low-frequency band to estimate beam angles of the UEs relative to the electronic device. High-frequency band beams of the UEs relative to the electronic device are generated according to the estimated beam angles. The electronic device is enabled to communicate with the UEs according to the generated high-frequency band beams.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: January 9, 2024
    Assignee: Nanning FuLian FuGui Precision Industrial Co., Ltd.
    Inventor: Yu-Sheng Li