Patents Examined by Frank Lawrence, Jr.
  • Patent number: 8636834
    Abstract: The invention relates to a safe hydrogen-storing tank that is easy to manufacture and enables the quick kinetic absorption of hydrogen, which reduces the variations in volume and has a low cost in terms of material and energy. The invention has the aim of providing a tank for storing hydrogen, including a hydrogen inlet (21) and a hydrogen outlet (22) in fluid communication with at least one solid body (10-11) capable of the exothermal absorption and endothermal desorption of hydrogen, wherein said at least one solid body (10-11) is made of a compacted material containing light metal hydride and a heat-conducting matrix, and wherein said at least one solid body (10-11) is in heat-transfer relation with at least one heat recovery material (42) free from salt or molten-salt compounds and capable of absorbing the heat generated by the hydrogen absorption and of releasing said absorbed heat so as to provide heat for hydrogen desorption.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: January 28, 2014
    Assignees: Centre National de la Recherche Scientifique, McPhy Energy
    Inventors: Daniel Fruchart, Michel Jehan, Patricia De Rango, Salvatore Miraglia, Philippe Marty, Albin Chaise, Sylvain Garrier, Gérard Bienvenu
  • Patent number: 8628609
    Abstract: A hydrogen containing tank having an inside wall that is uniquely bonded to a hydride core which is a porous hydrogen containing core material. The high hydrogen content capability and high thermal conductivity properties accommodate rapid release and intake of hydrogen gas. Low temperatures and high hydrogen charging discharging rates help to alleviate the use of hydrogen as an energy source in numerous applications.
    Type: Grant
    Filed: March 1, 2009
    Date of Patent: January 14, 2014
    Inventor: Fredy Ornath
  • Patent number: 8628602
    Abstract: An air processing device for a utility vehicle includes a compressor and two air dryer cartridges. The air dryer cartridges are located in two parallel paths. A control unit controls a regeneration of one of said air dryer cartridges independent from a load phase of the other of said air dryer cartridges.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: January 14, 2014
    Assignee: Haldex Brake Products GmbH
    Inventor: Siegfried Heer
  • Patent number: 8623120
    Abstract: An apparatus and a method for recovery of sulfur hexafluoride is provided. Sulfur hexafluoride (SF6) may be separated with high-concentration and improved recovery ratio through a multi-stage separation and recovery processes using a plurality of separation membrane modules, and as well, SF6 gas may be concentrated to maximize the SF6 recovery ratio before the separation and recovery processes through the separation membrane modules. Furthermore, sulfur dioxide (SO2) and moisture included in the SF6 waste gas may be removed effectively so as to extend the service life of the separation membrane modules.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: January 7, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Sang Hyup Lee, Hyun Jung Lee, Joong Kee Lee, Joo Man Woo, Min Woo Lee, Han Byul Kim
  • Patent number: 8623118
    Abstract: A cyclic adsorption process is provided, the process containing one or more adsorber vessels undergoing the steps of at least pressurization and depressurization and driven by one or more variable speed centrifugal machines operating under acceleration and deceleration conditions and adjusted to the steps, vessel size, and process conditions employed, wherein the process cycle time is greater than the ratio of the change in inertia, defined the maximum energy that can be lost during a cycle due to inertia changes, to 0.3 times the total power of the one of more centrifugal machines that would be consumed in the absence of inertial effects.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 7, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Paul W. Belanger, Michael S. Manning, Andrew C. Rosinski
  • Patent number: 8615812
    Abstract: High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 31, 2013
    Assignee: Advanced Fuel Research, Inc.
    Inventors: Marek A. Wójtowicz, Eric P. Rubenstein, Michael A. Serio, Joseph E. Cosgrove
  • Patent number: 8609191
    Abstract: The present invention provides an air-permeable filtration media that includes an air-permeable backing and an adsorbent. The adsorbent is at least partially embedded in the air-permeable backing. The present invention also provides a method of manufacturing an air-permeable filtration media. The present invention also provides a method of substantially removing contaminants form air, employing the air-permeable filtration media.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 17, 2013
    Assignee: Point Source Solutions, Inc.
    Inventors: James A. Raetz, Gregory J. Raetz
  • Patent number: 8608831
    Abstract: Compressed gas dryer, provided with a drying zone (3) and a regeneration zone (5), and a drum (9) rotatable in the housing (2) containing a drying agent (8) that is transferred successively through the drying zone (3) and the regeneration zone (5), whereby said regeneration zone (5) comprises a first subzone (6) having a first inlet to supply a first regeneration gas flow, and a second subzone (7) having a second inlet to supply a second regeneration gas flow of which the relative humidity is lower compared to that of the first regeneration gas flow; and that an outlet of said drying zone (3) is connected via a connection conduit (17) to the second inlet of the second subzone (7).
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Atlas Copco Airpower Naamloze Vennootschap
    Inventor: Constantijn Friso Vermeer
  • Patent number: 8603405
    Abstract: A distributed energy system includes a gas-loaded heat generator capable of producing a thermal energy. The system includes a gas source to provide one or more isotopes of hydrogen, a plurality of metallic micro-structures, a gas loading chamber containing the plurality of metallic micro-structures. The gas loading chamber is structured to receive the one or more isotopes of hydrogen from the gas source. The system also includes a gas loading system capable of providing a gas loading pressure to the gas loading chamber containing the plurality of metallic micro-structures with an amount of one or more isotopes of hydrogen to form hydrogen clusters. In one form, the system further includes a thermal transducer capable of converting a first portion of the thermal energy. In still another form, the system additionally includes a waste heat recovery device capable of applying a second portion of the thermal energy.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: December 10, 2013
    Assignee: NPL Associates, Inc.
    Inventors: George H. Miley, Xiaoling Yang
  • Patent number: 8597400
    Abstract: In a method and an apparatus for separating at least one gaseous component from a waste gas of an installation for producing liquid pig iron, liquid primary steel products or sponge iron, in a first step, a stream of the waste gas passes through at least one adsorption separator at a first pressure, whereby the gaseous component is largely separated from the waste gas and, in a second step, the gaseous component is largely removed from the adsorption separator at a second pressure, which is lower than the first pressure. The method and apparatus are maintenance-free, cause low investment and energy costs and has a lower space requirement by a method in which the second pressure or the desorption pressure is generated by at least one jet pump, which is fed a stream of a propellant gas at a third pressure, which is higher than the second pressure.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: December 3, 2013
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Robert Millner, Norbert Rein, Gerald Rosenfellner
  • Patent number: 8597408
    Abstract: An apparatus for separation of gases from ambient air that has at least one separation column with an inlet at a first end and an outlet at a second end, a buffer column having a single inlet at a first end, a vacuum pump, and a valve system that connects the vacuum pump to the outlet at the first end of the separation column, and that connects the outlet at the second end of separation column to the single inlet at the first end of the buffer column.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: December 3, 2013
    Assignee: Vbox, Incorporated
    Inventors: Nicholas P. Van Brunt, Theodore W. Jagger, Perry B. Lonnes, John A. Kivisto
  • Patent number: 8597406
    Abstract: This invention provides metal-organic frameworks (MOFs) having repeat units of the formula Zn4O(fumarate)3. Also provided are compositions thereof and methods use thereof, including for gas storage, gas separation, catalysis and sensing.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: December 3, 2013
    Assignee: Board of Regents, The University of Texas System
    Inventor: Banglin Chen
  • Patent number: 8597411
    Abstract: An acid-gas sorbent comprising an amine-composite. The present composite may comprise a first component comprising an amine compound at a concentration of from about 1 wt % to about 75 wt %; a second component comprising a hydrophilic polymer and/or a pre-polymer compound at a concentration of from about 1 wt % to about 30 wt %; and a third component comprising a cross-linking agent, and/or a coupling agent at a concentration of from about 0.01 wt % to about 30 wt %.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: December 3, 2013
    Assignee: Archon Technologies Ltd.
    Inventors: Ahmed M. Shahin, Conrad Ayasse
  • Patent number: 8597410
    Abstract: This invention provides a dynamic hydrogen-storage apparatus and the method thereof, which includes the following steps: (a) filling a container with a porous hydrogen-storage material which is loaded or doped with a catalyst; (b) setting an operational pressure and a pressure drop for the operation of storing hydrogen; (c) providing the hydrogen-storage material with a hydrogen so as to increase the pressure of the hydrogen to the operational pressure; (d) decreasing the pressure of the hydrogen by the pressure drop; and (e) repeating steps (c) and (d) for a predetermined amount of times.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 3, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Cheng-Hsiang Tung, Ming-Sheng Yu, Hsiu-Chu Wu, Huan-Hsiung Tseng
  • Patent number: 8597409
    Abstract: Compressor installation including a compressor and a dryer which are mutually connected via a pressure pipe. The dryer includes a housing with a drying zone and a regeneration zone, and a rotating drum with a drying agent. The regeneration zone includes a first subzone and a second subzone. Two regeneration conducts connect to the pressure pipe, respectively a first regeneration conduit which connects to an inlet of the first subzone and through which compressed gas having a first temperature is guided, and a second regeneration conduit which connects to an inlet of the second subzone. The second regeneration conduit has a heating element for heating compressed gas flowing through the second regeneration conduit to a second temperature which is higher than the first temperature.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 3, 2013
    Assignee: Atlas Copco Airpower, Naamloze Vennootschap
    Inventor: Bart Etienne Agnes Vanderstraeten
  • Patent number: 8585804
    Abstract: A natural gas liquids (NGL) recovery system and method for separating NGLs from a feed gas is provided. The method includes receiving the feed gas; increasing a pressure of the feed gas by running the feed gas through a compressor connected to a gas turbine; diverting part of the feed gas from an output of the compressor and feeding the diverted part to a dryer; drying the diverted part to remove water and produce a dry gas; expanding the dry gas in a turbo-expander; separating the expanded gas into the NGL and fuel gas; and providing the fuel gas to the gas turbine as fuel without contamination.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: November 19, 2013
    Assignee: Nuovo Pignone S.p.A.
    Inventors: Simone Amidei, Francesca Monti, Andrea Giusti, Mesgina Tsegai Risat
  • Patent number: 8585802
    Abstract: An energy-efficient method of recovering carbon dioxide (CO2) in a high-pressure liquid state from a high-pressure gas stream. The method includes cooling, condensing, and/or separating CO2 from a high-pressure gas stream in two or more separation zones and further purifying the resulting sub-critical pressure liquid CO2 streams in a third purification zone to thereby provide purified CO2. The purified liquid CO2 may be pumped to above the critical pressure for further utilization and/or sequestration for industrial or environmental purposes.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 19, 2013
    Inventor: Arnold Keller
  • Patent number: 8580015
    Abstract: A feed gas drying system is described for a PSA or VPSA oxygen concentrator. A membrane dryer is inserted into the feed gas path to the concentrator absorbent beds, such that the moisture in the feed gas is directed to a part of the dryer exposed to the concentrator exhaust, thus achieving efficient operation of the membrane dryer with no loss of concentrator feed gas.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: November 12, 2013
    Assignee: Imogen, Inc.
    Inventors: Brenton Taylor, Peter Hansen
  • Patent number: 8580010
    Abstract: A dew point temperature sensor detects and sends the dew point temperature of the supply air to a dry area, as a supply air dew point temperature, to a controller. The controller has a speed of rotation of the regenerating side fan (the regenerating air flow rate) to control, and determines a control value (the regenerating air flow rate) that causes the supply air dew point temperature to go to a target dew point temperature, and determines a supply air processing pre-cooling coil exit temperature setting value in accordance with this control value (where if the control value is in the direction of reducing the regenerating air flow rate, the supply air processing pre-cooling coil exit temperature setting value is increased). Note that what is controlled is the speed of rotation of the desiccant rotors, or the exit temperatures of the air heated by the hot water coils.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 12, 2013
    Assignee: Azbil Corporation
    Inventors: Tadahiko Matsuba, Naofumi Ushioda, Yoshitaka Takakura
  • Patent number: 8574443
    Abstract: A drain connector may be arranged within a trough or sump of a grease containment apparatus to separate a water component from brown water, and automatically drain same when the brown water attains a predefined level, to prevent overflowing of brown water from the grease containment apparatus. A grease containment apparatus arranged to receive grease discharged by a fan-type rooftop grease exhauster may include multiple corner sections and at least one trough disposed between the sumps, and arranged on at least one (preferably all) sides of a rooftop grease exhauster. Mounting brackets with multiple bends may flexibly support a grease containment apparatus above a roof surface. Flashing is provided to direct grease into at least one trough section. A venturi cleaning attachment may be provided to promote forced suction discharge of a grease containment system motivated by ingress of pressurized fluid.
    Type: Grant
    Filed: April 30, 2011
    Date of Patent: November 5, 2013
    Assignee: DunnWell, LLC
    Inventors: Shawn William Boland Mims, Joseph R. Dunn