Patents Examined by Fred H. Mull
  • Patent number: 10341004
    Abstract: A system for beam training including a transmitter forming a transmission beam using a transmission array and a receiver forming a receiving beam using a receiving array is disclosed. The transmitter transmits an identifier of a transmission training beam selected from the transmission beams using a secondary synchronization signal or a common reference signal, etc. The identifier of the transmission training beam is used for the beam training.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: July 2, 2019
    Assignee: Chung-Ang University Industry—Academy Cooperation Foundation
    Inventors: Yong Soo Cho, Bon Woo Ku
  • Patent number: 10330769
    Abstract: A method and apparatus for geolocating emitters in a multi-emitter environment is disclosed. A number of lines of bearing (LOBs) associated with emitters of particular signal characteristics are determined, and a peak where the greatest number of such LOBs intersect is identified. A group of the LOBs that are within a distance threshold of the identified peak identified and used to locate a first emitter. The first group of LOBs are then excluded from consideration, facilitating the easier identification of a second peak where the greatest number of residual LOBs intersect. Residual LOBs within a threshold distance of the second peak are identified, and used to identify the second emitter, and the process is repeated until satisfactory results are obtained.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: June 25, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Tanya G. Mayer, Eric M. Monsler
  • Patent number: 10330795
    Abstract: A plurality of GNSS satellite signals feeds multiple signal processing engines, each operating in certain processing mode including carrier smoothed pseudorange positioning, precise point positioning (PPP), pseudorange differential (DGNSS), carrier phase differential (RTK). Each processing engine (or processing thread of the same engine) runs the same unified numerical algorithm and uses the same or different sets of parameters. All engines can use the same set of signals, or the set of signals can be split into non-intersecting subsets, or the set of signals can be split into the overlapping subsets. Each engine produces estimates of certain parameters, namely carrier phase ambiguities and ionospheric delays for each satellite. These estimates are then combined into a resulting estimate which in turn is used for calculation of the final position reported by the receiver.
    Type: Grant
    Filed: July 4, 2016
    Date of Patent: June 25, 2019
    Assignee: Topcon Positioning Systems, Inc.
    Inventors: Ivan Giovanni Di Federico, Lev Borisovich Rapoport
  • Patent number: 10330768
    Abstract: A method, system and device for obtaining the position of a mobile device. The method including determining a current set of possible positions of the mobile device from a distance between the mobile device and an anchor device at a current instant; determining a subsequent set of possible positions at a subsequent instant from the current set of possible positions and from a vector of movement of the mobile device at the instant; estimating the distance between the mobile device and the anchor device at the subsequent instant; obtaining a new current set of possible positions of the mobile device by selecting within the subsequent positions those which are, from the anchor device, at the distance estimated at the estimating step; and repeating the last three steps until the new current set of possible positions includes only one element.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: June 25, 2019
    Assignee: Orange
    Inventor: Martin Macuha
  • Patent number: 10324158
    Abstract: An apparatus comprising a plurality of receivers, a controller and memory storing instructions executable by the controller, the instructions, when executed by the controller causing the controller to receive data of signals received via the receivers as a signal from a transmitter, to segment the received data into a plurality of consecutive segments, to determine if consecutive data segments have changed in a manner indicative of movement of the transmitter and to, based on the determination, determine an angle of arrival of the signal based on data segments that have solely been received before or that have solely been received after a detected change in consecutive data segments indicative of movement of the transmitter or that have been received between two detected changes in consecutive data segments indicative of movement of the transmitter.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: June 18, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Stephen Wang, Dallan Byrne
  • Patent number: 10320467
    Abstract: Various embodiments are described that relate to radio beamforming waveform transmission. Transmission can occur, for example, in three manners. The first manner is time-based where waveform transmission is staggered at the same frequency. The second manner is frequency-based where different frequencies are used at one time. This third manner is a combination of time and frequency such that simultaneous transmission occurs, but at different times different frequencies are used.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 11, 2019
    Assignee: The United States of America, as represented by the Secretary of the Army
    Inventors: Ryan Elwell, Mark Govoni
  • Patent number: 10310089
    Abstract: Aspects of the disclosure include a method for sharing satellite navigation messages. The method includes receiving a download report from a receiver. The download report indicates what portions of a satellite navigation message are currently stored by the receiver. The method also includes determining whether to update a satellite navigation message database associated with a server based on the portions of the satellite navigation message stored by the receiver. In response to determining that the satellite navigation message database should be updated, the method further includes requesting the receiver to transmit a subset of the satellite navigation message currently stored by the receiver to the server; receiving the subset of the satellite navigation message; and updating the satellite navigation message database associated with the server based on the received subset of the satellite navigation message.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: June 4, 2019
    Assignee: MARVELL WORLD TRADE LTD.
    Inventors: BoChih Liu, Zhike Jia, Jian Chen, Zhicui Lu, Juhong Xing, Feng Xu
  • Patent number: 10295313
    Abstract: This invention allows combining broadband GW(10+9 Watt), peak power to achieve MV/m(10+6 Volt/meter), and GV/m(10+9 Volt/meter), radiated E-fields, in the range of air or vacuum breakdown in the entire electromagnetic spectrum, including optical frequencies and beyond. Use of many antennas and independently triggered generators allows achieving GV/m field, while by preventing the E-field induced breakdown it provides control of peak power and energy content at targets. The achieved broadband MV/m E-field levels and energy density significantly exceed levels required for destruction of distant electronic targets; therefore this invention radically improves the effectiveness of the electromagnetic weapons. Furthermore, collimating multiplicity of MV/m beams allows reaching GV/m E-field that exceeds by orders of magnitude the air or vacuum breakdown needed for broadband plasma excitation at resonance plasma frequencies in the 300 GHz range.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: May 21, 2019
    Inventor: Andrew Stan Podgorski
  • Patent number: 10288743
    Abstract: A plurality of GNSS satellite signals feeds the signal processing engine operating in certain processing mode including carrier phase smoothed pseudorange positioning, precise point positioning (PPP), pseudorange differential (DGNSS), and carrier phase differential (RTK). The processing engine calculates two estimates of the ionosphere delay for each satellite: the filtered delay and the instant delay. Comparison of them allows to detect turbulent variation of the ionosphere and adjust parameters of two-parametric dynamic mode which improves positioning precision.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: May 14, 2019
    Assignee: Topcon Positioning Systems, Inc.
    Inventor: Lev Borisovich Rapoport
  • Patent number: 10267920
    Abstract: An object is to provide in a positioning device of a moving body such as a vehicle, a technique which can modify a built-in clock error of a moving body to increase accuracy of a velocity. The positioning device includes a built-in clock error estimating unit which estimates a built-in clock error of the vehicle as a built-in clock error based on a difference between a delta range and a calculated range rate, and a range rate estimating unit which estimates a vehicle stop range rate based on position and velocity of GPS satellite based on transmission signal and a vehicle position, and modifies a calculated range rate, based on the built-in clock error. Further, the positioning device includes an own vehicle velocity calculating unit which calculates own vehicle velocities in three axial directions which form an orthogonal coordinate system, based on a navigation matrix, the vehicle stop range rate and the modified calculated range rate.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 23, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tadatomi Ishigami, Atsushi Maeda, Masatoshi Fujii, Hirokazu Chiyonobu, Kohei Fujimoto
  • Patent number: 10254412
    Abstract: The invention relates to a method for computing a bound B up to a given confidence level 1??, of an error in a state vector estimation KSV of a state vector TSV of a physical system as provided by a Kalman filter. The method decomposes the errors of the Kalman solution as a sum of the errors due to each of the measurement types used in the filter, In addition, the contribution of each type of measurement is bounded by a multivariate t-distribution that considers the error terms from all the epochs processed. Then, the method implements three main operations: computing a probability distribution of the measurement errors for each epoch and measurement type; summing the previous distributions to obtain a global distribution that models the Kalman solution error; and computing the error bound B for a given confidence level from the resulting distribution.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: April 9, 2019
    Assignee: GMV AEROSPACE AND DEFENCE, S.A.
    Inventor: Pedro Francisco Navarro Madrid
  • Patent number: 10234536
    Abstract: A method of geolocating comprises: receiving wirelessly, at an asset located on the Earth's surface and from at least two airborne aircraft, ADS-B signals, respectively; interpolating, using a Bayes filter, at least some state information of the at least two airborne aircraft based on the ADS-B signals, respectively; determining differences in received signal strength indicator (RSSI) values (RSSI-difference values) of successive aircraft-specific ADS-B signals, respectively; estimating, using a likelihood function, locations of the asset based on the RSSI-difference values, the ADS-B signals and the interpolated state information, respectively, thereby producing a set of estimated locations; and searching amongst the set to find one of the estimated locations that is regarded as being most likely to most accurately describe an actual position of the asset.
    Type: Grant
    Filed: November 29, 2015
    Date of Patent: March 19, 2019
    Assignee: LINK LABS, INC.
    Inventors: Ricardo Luna, Jr., Adrian Sapio, Richard Kevin Sawyer, Jr., Mark Olden Bloechl
  • Patent number: 10234532
    Abstract: A rotation determiner determines whether an antenna azimuth (AZ) angle rotates beyond a rotation range within a predetermined time based on a predicted orbit value. When the antenna AZ angle rotates beyond the rotation range, an orbit determiner determines whether an estimated satellite position is within a drivable range that the AZ angle rotates from a reference value beyond the rotation range. When the AZ angle rotates beyond the rotation range and the estimated satellite position is within the drivable range, three-axis control is executed, and the AZ angle is kept at a predetermined value. When the AZ angle rotates beyond the rotation range and the estimated satellite position is not within the drivable range, or when the AZ angle does not rotate beyond the rotation range, two-axis control is executed.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: March 19, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Naoya Uego, Yuji Sakai, Masakazu Saito
  • Patent number: 10230163
    Abstract: A method including receiving a monopulse transmission by a monopulse antenna determining an angle of arrival of the monopulse transmission, using processing circuitry operably coupled to the monopulse antenna, determining, using the processing circuitry, an angle error for a high gain antenna based on the angle of arrival of the monopulse transmission, and causing the positioning of the high gain antenna based on the angle error.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: March 12, 2019
    Assignee: The Johns Hopkins University
    Inventors: Norman H. Adams, Hermann B. Sequeira, Matthew G. Bray, Dipak K. Srinivasan, Ron C. Schulze
  • Patent number: 10222481
    Abstract: The present invention is directed to a system for providing precision location determination. The system includes a receiver configured for receiving both a first set of signals from a first constellation of satellites and a second set of signals from a second constellation of satellites. The system further includes a processor, which is connected to the receiver and is configured for processing the received satellite signals. The system further includes control programming for executing on the processor. The control programming is configured for determining a first location of the receiver based upon the first set of received signals and for determining a second location of the receiver based upon the second set of received signals. The control programming is further configured for correlating the first location and the second location to provide an enhanced location for the receiver.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: March 5, 2019
    Assignee: Rockwell Collins, Inc.
    Inventor: Richard E. Heinrich
  • Patent number: 10215850
    Abstract: Technology for determining an orbit of a geosynchronous satellite is described. A ground station can receive a transponded (RF) signal from a relay satellite. The relay satellite can receive an RF signal from the geosynchronous satellite and transpond the RF signal to create the transponded RF signal. The ground station can identify a second Doppler shift associated with the transponded RF signal received at the ground station from the relay satellite. The RF signal received at the relay satellite from the geosynchronous satellite can be associated with a first Doppler shift. The ground station can determine a frequency of the transponded RF signal received at the ground station from the relay satellite. The first Doppler shift associated with the RF signal transmitted from the geosynchronous satellite to the relay satellite can be calculated using the frequency of the transponded RF signal and the second Doppler shift associated with the transponded signal.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: February 26, 2019
    Assignee: Raytheon Company
    Inventor: Ian S. Robinson
  • Patent number: 10209342
    Abstract: An electromagnetic radiation source locating system including an electromagnetic radiation sensor including an antenna configured to detect a radiant energy transmission. A position detector is in communication with the controller and is configured to detect the position of the antenna relative to a reference coordinate system, while an orientation sensor is in communication with the controller and is configured to detect the orientation of the antenna and provide an orientation signal to the controller. A range sensor is configured to detect the distance to an aligned object in the path of a directional vector and provide a distance signal indicative thereof to the controller. An aerial vehicle may be in communication with the controller and configured to drop a marker for guiding navigators to the source of the radiant energy transmission.
    Type: Grant
    Filed: January 13, 2018
    Date of Patent: February 19, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Gerald F Miller
  • Patent number: 10205234
    Abstract: A method of operating an antenna system for a wireless device is provided for controlling radiation characteristics of the antenna system. The antenna system includes first and second sets of feed points disposed so that first and second radiation pattern are generated by the antenna system when drive currents are provided at the first and second set of feed points, respectively. The second radiation pattern is different from the first radiation pattern. The first and second drive currents are supplied such that a predetermined overall radiation pattern is generated. The predetermined overall radiation pattern is at least in part a combination of the first radiation pattern and the second radiation pattern. The system and method may be directed toward Specific Absorption of Radiation (SAR) mitigation.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: February 12, 2019
    Assignee: Netgear, Inc.
    Inventors: Paul A. Nysen, Todd Van Cleave
  • Patent number: 10164319
    Abstract: An approach for determining remote terminal antenna alignment in a satellite communications system is provided. A point in time for an expected conjunction of an a remote terminal antenna, a satellite in communication with the remote terminal and the Sun is determined based on predetermined positional data. An interference level imposed by the Sun on communication signals between the antenna and the satellite is measured at a number of respective points in time. A one of the points in time is determined when the interference is at a peak level. Then information regarding alignment of the antenna with respect to the satellite is determined, wherein the determination of the antenna alignment information is based on a comparison between the one point in time of the peak interference level and the expected point in time of the conjunction of the antenna, the satellite and the Sun.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: December 25, 2018
    Assignee: DISH Technologies L.L.C.
    Inventors: Samuel Whitley, Silas Cole
  • Patent number: 10148009
    Abstract: A method and apparatus for phase-mode feeding a circular antenna array for beamsteering is provided. A Butler Matrix having M antenna-side ports and M input/output ports is coupled to beamsteering circuitry. The coupled input/output ports may include a port corresponding to a phase-mode having an order magnitude greater than one. The coupled input/output ports may include ports of three different order magnitudes of phase-mode. The Butler Matrix is coupled to M inner ports of a radial waveguide, and the antenna elements are coupled to N outer ports of the waveguide, where N>M. Where M=4, the input/output ports correspond to a zeroth order phase-mode, plus and minus 1st order phase-modes, and a second order phase-mode. The zeroth order phase-mode may be used for beamsteering closer to the radial axis of the antenna array while the second order phase-mode may be used for beamsteering further from the radial axis.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 4, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Marek Klemes