Abstract: Communication systems are described that use unequally spaced constellations that have increased capacity compared to conventional constellations operating within a similar SNR band.
Abstract: Communication systems are described that use unequally spaced constellations that have increased capacity compared to conventional constellations operating within a similar SNR band.
Abstract: A first physical layer device includes a first transmitter and a first receiver. The first transmitter transmits first data to a second physical layer device over a medium at a first line rate during a first transmit period. The first receiver is configured to not receive data during the first transmit period and an echo reflection period occurring after the first transmit period. The echo reflection period is based on a length of the medium between the first physical layer device and the second physical layer device. The first receiver is configured to, after the echo reflection period, receive second data from the second physical layer device over the medium at a second line rate that is less than the first line rate.
Abstract: A first communication device is configured to process packets that conform to a first physical layer (PHY) protocol for wireless vehicular communications and packets that conform to a second PHY protocol for wireless vehicular communications. The first communication device determines that one or more second communication devices neighboring the first communication device are not capable of processing packets that conform to the second PHY protocol. The first communication device transmits a first packet to a third communication device that is configured to process packets that conform to the first PHY protocol and packets that conform to the second PHY protocol. The first packet indicates that the one or more second communication devices neighboring the first communication device are not capable of processing packets that conform to the second PHY protocol to inform the third communication device of the one or more second communication devices.
Abstract: An integrated circuit device includes functional circuitry, and serializer/deserializer circuitry for serial communication with the functional circuitry. The serializer/deserializer circuitry includes phase interpolator circuitry for interpolating phases of a clock signal of the integrated circuit device. The phase interpolator circuitry includes a phase shift register having storage locations configured to represent the phases of the clock signal, and phase rotation control circuitry configured to decode a phase code signal to determine a shifting direction for phase selections in storage locations of the phase shift register. The phase rotation control circuitry may be configured to determine the shifting direction based on only the most significant bit and the second most significant bit of the phase code signal.
Abstract: Techniques are provided which may be implemented using various methods and/or apparatuses in a mobile device to address maximum permissible exposure (MPE) proximity sensor failure. A mobile device may include a maximum permissible exposure (MPE) sensor control unit to actively monitor signals associated with proper operation of the MPE proximity sensors. Upon detecting an anomaly in any of these signals, such as a value drop below a given threshold, an MPE sensor control Unit will inform an AP (application processor, or other processor or controller) which in turn trigger display of a warning message on the display of the mobile device or the issuance of other warnings such an audible or tactile alert to inform the end user about the maximum permissible exposure (MPE) proximity sensor malfunction and/or notify the end use of a condition resulting in deactivation of the 5G new radio transceiver.
Abstract: Methods and systems are described for generating a time-varying information signal at an output of a continuous time linear equalizer (CTLE), asynchronously sampling a data signal according to a sampling clock having a frequency less than a data rate of the data signal; generating corresponding pattern-verified samples for at least two data patterns, each of the at least two data patterns having a respective frequency content; determining corresponding frequency-specific voltage measurements associated with each of the at least two data patterns based on the corresponding pattern-verified samples of the at least two data patterns; and adjusting an equalization of the data signal based on a comparison of the corresponding frequency-specific voltage measurements.
Abstract: A method for adaptive coding and modulation. The method includes generating a set of mapping functions and transmitting a tth set of transmit symbols where 1?t?T and T is a maximum number of symbol transmissions. Transmitting the tth set of transmit symbols includes transmitting each transmit symbol in the tth set of transmit symbols. Each transmit symbol is transmitted by a respective transmitter. Transmitting each transmit symbol includes generating a tth set of mapped symbols, generating each transmit symbol from the tth set of mapped symbols, and transmitting each transmit symbol. Generating the tth set of mapped symbols includes applying a mapping functions subset of the set of mapping functions on a respective data vector. Each mapping function in the mapping functions subset depends on a respective mapped symbol in an rth set of mapped symbols where 0?r?T.
Type:
Grant
Filed:
April 15, 2022
Date of Patent:
November 14, 2023
Inventors:
Mohammad Sadegh Safari, Vahid Pourahmadi, Patrick Mitran
Abstract: A signal modulation device includes: a conversion module, configured to convert a baseband coded signal and output an in-phase signal sequence and a quadrature signal sequence; a coding expansion module, connected to the conversion module and configured to expand the in-phase signal sequence and the quadrature signal sequence respectively and output an in-phase signal coded sequence and a quadrature signal coded sequence; and a modulation module, connected to the coding expansion module and configured to modulate the in-phase signal coded sequence and the quadrature signal coded sequence and output a radio frequency signal.
Abstract: The present invention provides a method for receiving, by a terminal, a downlink phase tracking reference signal from a base station in a wireless communication system, and a device for supporting the same. According to an embodiment applicable to the present invention, a terminal may receive, from a base station, a phase tracking reference signal on the basis of the number of phase tracking reference signal ports, which is determined on the basis of different methods, according to whether transmission configuration indication (TCI) state-related information exists in received downlink control information. Further, the base station may transmit the phase tracking reference signal to the terminal accordingly.
Abstract: Systems, methods, and devices enable coexistence of traffic for collocated transceivers. Methods may include transmitting a baseband training signal via a transmit path of a wireless communications device, obtaining a plurality of samples of the baseband training signal via a receive path of the wireless communications device, and generating a plurality of weighted averages based on the plurality of samples. Methods may further include generating an estimated amplitude and an estimated phase for at least one spur frequency of the wireless communications device based, at least in part, on the plurality of weighted averages.
Abstract: PBCH design may affect timing indication in a wireless network and polar code interleaver design, among other things. Mechanisms may indicate half frame timing though de-modulation reference signal sequence initialization, de-modulation reference signal mapping order, or de-modulation reference signal resource element location.
Type:
Grant
Filed:
December 7, 2022
Date of Patent:
October 24, 2023
Assignee:
IPLA HOLDINGS INC.
Inventors:
Lakshmi R. Iyer, Allan Y. Tsai, Qing Li, Joseph M. Murray
Abstract: A receiver includes an equalization circuit configured to output a data sample signal and an edge sample signal by sampling a data input signal according to clock signal, and to perform an equalization operation according to the data sample signal and the edge sample signal; and a clock gate circuit configured to select the clock signals from among a plurality of multi-phase clock signals according to a selection signal.
Type:
Grant
Filed:
August 12, 2021
Date of Patent:
October 10, 2023
Assignees:
SK hynix Inc., Seoul National University R&DB Foundation
Abstract: A linear retimer includes an equalizer, a clock recovery circuit, a sample and hold (S/H) circuit, and a linear driver. The equalizer receives an input signal and outputs an equalized signal. The clock recovery circuit receives the equalized signal and outputs a clock signal. The S/H circuit receives the equalized signal and the clock signal and outputs a retimed signal. The linear driver receives the retimed signal and outputs a recovered signal. The S/H circuit is configured to preserve a voltage of the equalized signal in the retimed signal. In some examples, the S/H circuit is part of a linear three-tap feedforward equalizer, and the linear driver receives an output of the feedforward equalizer. The linear retimer can be placed between a transmitter and a channel or after the channel.
Type:
Grant
Filed:
October 28, 2020
Date of Patent:
August 29, 2023
Assignee:
TEXAS INSTRUMENTS INCORPORATED
Inventors:
Abishek Manian, Amit Rane, Ashwin Kottilvalappil Vijayan
Abstract: Disclosed herein are an apparatus and method for transmitting and receiving a 4-layer layered-division multiplexing (LDM) signal. An apparatus for transmitting a 4-layer layered-division multiplexing signal includes a layered-division multiplexing modulation unit for generating a 3-layer layered-division multiplexing signal by performing layered-division multiplexing modulation on three layer signals and generating a 4-layer layered-division multiplexing signal by inserting a Pseudo-random Noise (PN) sequence into the 3-layer layered-division multiplexing signal, a pilot insertion unit for inserting a pilot into the 4-layer layered-division multiplexing signal, and a transmission unit for transmitting the 4-layer layered-division multiplexing signal.
Type:
Grant
Filed:
April 1, 2021
Date of Patent:
August 8, 2023
Assignee:
ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
Inventors:
Jae-Hwui Bae, Young-Su Kim, Dong-Joon Choi, Nam-Ho Hur
Abstract: A coding and modulation apparatus and method are presented. The apparatus comprises an encoder that encodes input data into cell words, and a modulator that modulates said cell words into constellation values of a non-uniform constellation. The modulator is configured to use, based on the total number M of constellation points of the constellation and the code rate, a non-uniform constellation from one or several groups of constellations each comprising one or more constellations.
Type:
Grant
Filed:
November 23, 2022
Date of Patent:
August 1, 2023
Assignee:
Saturn Licensing LLC
Inventors:
Nabil Loghin, Lothar Stadelmeier, Jan Zoellner, Yuji Shinohara
Abstract: A user equipment (UE) transmits over multiple antenna ports and receives a control message from a base station in a wireless communication network. The control message comprises a precoding matrix indication field configurable to a first, second, and third configuration. The first configuration identifies precoding matrices in both a first set of precoding matrices and a second set of precoding matrices. The second configuration identifies precoding matrices in the second set of precoding matrices but not in the first set of precoding matrices. The third configuration identifies precoding matrices in a third set of precoding matrices in addition to the first and second sets. The precoding matrices in the sets are precoding matrices for transmissions from the UE. Each set of precoding matrices corresponds to a respective coherence capability. For a maximum of four spatial layers, the first, second, and third configurations occupy 5, 4, and 6 information bits, respectively.
Abstract: A device generates a symbol sequence by performing adaptive equalization by an estimation inverse transfer function of a transmission line on a reception signal sequence extracted from the transmission line, and performing provisional determination on the symbol sequence generated; generates a plurality of the symbol sequences indicating transmission line states in a range of a provisional determination symbol provisionally determined and nearby symbols of the provisional determination symbol; generates, based on the plurality of the symbol sequences indicating the transmission line states generated and an estimation transfer function of the transmission line, an estimation reception symbol sequence for each of the transmission line states; calculates a metric between the symbol sequence obtained from the reception signal sequence and each of a plurality of the estimation reception symbol sequences; selects a most likelihood estimation reception symbol sequence of the plurality of the estimation reception sym
Type:
Grant
Filed:
May 8, 2020
Date of Patent:
July 18, 2023
Assignee:
NIPPON TELEGRAPH AND TELEPHONE CORPORATION
Abstract: Communication systems are described that use unequally spaced constellations that have increased capacity compared to conventional constellations operating within a similar SNR band.
Abstract: A communication system includes one or more chargers and a server capable of communicating with the one or more chargers. The server obtains first information from a first vehicle via a first charger included in the one or more chargers, during charging of the first vehicle by the first charger, and supplies second information based on the first information to a second vehicle via a second charger included in the one or more chargers, during charging of the second vehicle by the second charger.
Type:
Grant
Filed:
April 1, 2022
Date of Patent:
June 20, 2023
Assignee:
PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA