Patents Examined by G. Anderson
  • Patent number: 7837312
    Abstract: A liquid cartridge has a container main body detachably mounted to a cartridge mounting section of a liquid consuming apparatus. The container main body includes a case main body having a liquid reservoir and a cover that covers one side of the case main body; a board mounting section provided on an outer side of the container main body, for mounting a circuit board having an information storage element, the board mounting section having a pair of board fixing bosses to be fitted in the mounting holes of the circuit board to locate the circuit board, and four guide walls provided on the peripheral four sides of the circuit board located by the pair of board fixing bosses. The three guide walls of the four guide walls that constitute the board mounting section form a substantially U-shaped opening that is open to the cover on the outer side of the case main body, and the other guide wall is at a rim of the cover.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 23, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Akihisa Wanibe
  • Patent number: 7840105
    Abstract: A fiber optic towed array is provided. The array includes a flexible core upon which is disposed a semi-rigid mandrel. The semi-rigid mandrel has a helical groove formed therein, in which is disposed an optical fiber, the optical fiber including a plurality of fiber gratings. The mandrel is in turn covered with a nylon or fiber screen and encased in a layer of open cell foam, which is encased in a protective covering that includes at least one strength member disposed along a longitudinal axis of the array.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: November 23, 2010
    Assignee: Sabeus, Inc.
    Inventors: Eric Lee Goldner, Fred Demetz
  • Patent number: 7835598
    Abstract: A method and apparatus for monitoring one or more environmental parameters using interferometric sensor(s), a cross-correlator, a two-dimensional photosensitive array and optical focusing means are described. The method and apparatus allows for near simultaneous monitoring of the parameter(s) of interest.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 16, 2010
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Richard L. Lopushansky, Larry A. Jeffers, John W. Berthold
  • Patent number: 7834964
    Abstract: A transflective liquid crystal display device with improved display quality in which the liquid initial alignment direction of the liquid crystal layer is in a direction perpendicular to the extending direction of a clearance between the counter electrode of a transmission portion and a counter electrode of a reflection portion or in a direction within a range of ±2° in the clockwise direction perpendicular to the extending direction of the clearance in a case where the liquid crystal layer comprises positive type liquid crystals, or the liquid crystal initial alignment direction of the liquid crystal layer is in a direction parallel with the extending direction of a clearance, or a direction within a range of ±2° in the clockwise direction relative to the extending direction of the clearance in a case where the liquid crystal layer comprises negative type liquid crystals.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 16, 2010
    Assignee: Hitachi Displays, Ltd.
    Inventors: Takahiro Ochiai, Toshio Miyazawa, Masahiro Maki, Tohru Sasaki, Masateru Morimoto
  • Patent number: 7831116
    Abstract: An optical waveguide, an optical printed circuit board equipped with the optical waveguide, and methods of manufacturing the optical waveguide and the optical printed circuit board are disclosed. The optical waveguide can include: a first cladding layer; a core formed on the first cladding layer; an alignment pattern, having a predefined positional relationship to the core, formed on the first cladding layer; a target mark formed on the alignment pattern to indicate a position of the alignment pattern; and a second cladding layer formed on the first cladding layer to cover the core, the alignment pattern, and the target mark. In such an optical waveguide, circuit patterns, etc., formed over the second cladding layer may be precisely and efficiently aligned with the core.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 9, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Joon-Sung Kim, Jae-Hyun Jung, Han-Seo Cho, Sang-Hoon Kim
  • Patent number: 7824110
    Abstract: The invention relates to a data transmission cable (10; 20), in particular for motor vehicles, at at least one of whose ends a plastics housing (14; 24) is arranged, said housing having mechanical dimensions in its interface region (30; 32) which conform to the FAKRA standardisation scheme. The data transmission cable (10; 20) has an optical waveguide, wherein a holding member (40) is provided in the plastics housing (14; 24), said holding member being configured for holding an optical imaging element (42) and for connecting the optical imaging element (42) to the optical waveguide.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventors: Bernd Rosenberger, Clemens Wurster
  • Patent number: 7824020
    Abstract: A liquid feed tube for feeding a liquid from a liquid tank disposed on a liquid jetting device body side to a jetting head mounted on a reciprocating carriage, including: a long elastic member and a film member connected in an airtight state to the elastic member along a longitudinal direction of the elastic member; and a space part formed by the elastic member and the film member and used as a liquid feed passage, wherein the elastic member is made of a specific resin composition. Thus, the bending rigidity of the liquid feed tube can be lowered, and the resistance to moisture permeability and the gas barrier property thereof can be realized at low cost.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: November 2, 2010
    Assignees: Bridgestone Corporation, Seiko Epson Corporation
    Inventors: Youkou Saito, Tadashi Utsunomiya, Toshio Kumagai, Hitoshi Matsumoto, Masanori Takemura, Kazuyuki Saito, Yasushi Soya
  • Patent number: 7824113
    Abstract: A small form factor pluggable (SFP) optical transceiver module and method for performing optical communications are provided. The SFP optical transceiver module has a housing to which a duplex receptacle is secured. The duplex receptacle has a C-shaped opening, the upper and lower portions of which are defined by upper and lower flexible retaining elements for receiving and retaining a duplex optical connector therein. An electrical assembly of the module is secured within the transceiver module housing. The electrical assembly comprises a PCB, the back end of which is configured as a plug end for removably plugging the PCB into a receptacle of an external communications management system.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: November 2, 2010
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Tom Sheau Tung Wong, Adrianus Van Haasteren, Tze Wei Lim
  • Patent number: 7809219
    Abstract: An acoustic sensor includes at least one photonic crystal structure having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing mechanically coupled to the at least one photonic crystal structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: October 5, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 7805045
    Abstract: A mechanism for cleaving optical fibers, comprising fiber cleaving means and gripping members arranged to grip an optical fiber and to apply a pulling force to put the fiber under tension whilst the fiber is cleaved, wherein the gripping member(s) C are arranged to eject a cleaved-off part of the fiber F into a receptacle 49 once the fiber has been cleaved, and/or the fiber F is bent during cleaving by means of a rotatable double anvil 47 widely separated from the gripping members.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: September 28, 2010
    Assignee: Tyco Electronics Raychem NV
    Inventors: Jan Watte, Yvette Jogien Plaisier, Jan Vandenbroeck
  • Patent number: 7802874
    Abstract: A restrictor with a structure to prevent a back flow of ink and an inkjet head including the restrictor. In the inkjet head, an ink channel is formed in a channel plate, and the ink channel includes an ink inlet, a plurality of pressure chambers, a manifold, a plurality of restrictors respectively connecting the pressure chambers to the manifold, and a plurality of nozzles. Piezoelectric actuators are formed on the channel plate. Each of the restrictors includes a plurality of protrusions formed on an inner surface thereof in a structure suitable to increase a flow resistance of the restrictor when ink flows from the pressure chamber to the manifold through the restrictor. Each of the protrusions includes a first surface facing a flow of ink moving through the restrictor in a direction from the manifold to the pressure chamber, and a second surface facing a flow of ink moving through the restrictor in a direction from the pressure chamber to the manifold.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Sang-kwon Wee, Se-young Oh, Jae-woo Chung, Mi-jeong Song
  • Patent number: 7798727
    Abstract: Various embodiments of duplex fiber optic connectors and optical transceiver modules are provided. One embodiment comprises an optical transceiver module comprising: an integrally-formed housing having a duplex front port with a pair of alignment holes for receiving a pair of ferrules from a duplex fiber optic connector, the duplex front port having an upper flexible retaining element and a lower flexible retaining element for retaining the pair of ferrules from the duplex fiber optic connector; an opto-electronic assembly contained within the housing; and an electrical interface extending from the integrally-formed housing.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: September 21, 2010
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Tom Sheau Tung Wong, Adrianus J. P. van Haasteren, Tze Wei Lim
  • Patent number: 7794056
    Abstract: An inkjet nozzle assembly is provided. The assembly comprises a nozzle chamber comprising a floor and a roof. The roof has a nozzle opening defined therein, and a moving portion moveable towards the floor. The assembly further comprises a thermal bend actuator, having a plurality of cantilever beams, for ejecting ink through the nozzle opening. A first active beam of the actuator defines at least 30% of a total area of the roof.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: September 14, 2010
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Gregory John McAvoy, Kia Silverbrook
  • Patent number: 7791705
    Abstract: A liquid crystal display (LCD) apparatus is divided into a display area on which an image is displayed and a non-display area surrounding the display area. The LCD apparatus includes an organic insulating layer partially formed in the non-display area. A portion of the organic insulating layer is not formed, obtaining a vent space through which to exhaust air trapped when a first substrate is combined with a second substrate of the liquid crystal display apparatus. The LCD apparatus may rapidly and easily exhaust the trapped air from the display area and uniformly maintain the cell gap between the first and second substrates, improving display quality of the LCD apparatus.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hyuk Jang, Dong-Seong Koo, In-Sung Lee, Han-Jin Joo
  • Patent number: 7787739
    Abstract: A system and method for testing a bare fiber optic. An actuator disposed on an adapter is engaged. The bare fiber optic is received in an insertion hole of the adapter for ensuring contact between the bare fiber optic and a test adapter in response to the actuator being engaged. The actuator is released in order to secure the bare fiber optic for testing. The bare fiber optic is tested through the test adapter in contact with the adapter.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: August 31, 2010
    Assignee: Embarq Holdings Company, LLC
    Inventor: Matthew A. Munn
  • Patent number: 7785017
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: August 31, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7787720
    Abstract: An optical coupling device including: at least a first input port for delivering an optical input signal beam that includes a plurality of wavelength channels; at least a first optical output port for receiving an optical output signal beam; a wavelength dispersion element for spatially separating the plurality of wavelength channels in the optical input signal beam to form a plurality of spatially separated wavelength channel beams; an optical coupling device for independently modifying the phase of each of the spatially separated wavelength channel beams such that, for at least one wavelength channel beam, a selected fraction of the light is coupled to the first output port and a fraction of the light is coupled away from the first output port.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 31, 2010
    Assignee: Optium Australia PTY Limited
    Inventors: Steven James Frisken, Glenn Wayne Baxter, Hao Zhou, Dmitri Abakoumov
  • Patent number: 7782433
    Abstract: A method of forming an oxide film on a surface of a copper alloy, including the steps of providing a copper alloy including copper and an element selected from the group consisting of Mn, Zn, Ga, Li, Ge, Sr, Ag, Ba, Pr and Nd, and diffusing atoms of the element to a surface of the copper alloy so as to form an oxide film on the surface of the copper alloy, wherein a concentration of the element in the copper alloy is more than 0.1 and not more than 20 atomic percentage and within a solubility limit of the element in the copper.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 24, 2010
    Assignees: Tohoku University, Advanced Interconnect Materials LLC
    Inventor: Junichi Koike
  • Patent number: 7778512
    Abstract: A light-pipe array system is provided. The system comprises a light projector that projects light, and a light-pipe array. The light-pipe array comprises a plurality of light-pipes. Each light-pipe comprises a dielectric transparent to the light, and an electrically conductive light barrier layer surrounding the dielectric. The barrier layer guides the light from an entrance of the dielectric surrounded by the barrier layer to an exit of the dielectric surrounded by the barrier layer. Each light pipe also comprises a light-receiving element that increases throughput of the guided light transmitted within the barrier layer via the dielectric. In one embodiment, the light-receiving element comprises an electrical conductor positioned along a central longitudinal axis of the dielectric. In another embodiment, the light-receiving element alternatively comprises a focusing element.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: August 17, 2010
    Assignee: Scenterra, Inc.
    Inventor: Daniel W. So
  • Patent number: 7773841
    Abstract: Fiber optic sensors commonly require a 180 degree turnaround to form a continuous optical circuit. Methods and apparatus for providing 180 degree turnarounds in a fiber optic system that include a shorter radius turnaround then provided by micro-bending the optic fiber are desired. An embodiment of a turnaround apparatus includes a first optic fiber pigtail, a second optic fiber pigtail, and an optical waveguide forming a U-shaped path having an input end optically connected to a first end of the first pigtail and an output end optically connected to a first end of the second pigtail.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: August 10, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Harini Varadarajan, Ramaswamy Meyyappan