Patents Examined by G. M. A Hyder
  • Patent number: 11953575
    Abstract: A perfusion chamber for use in a phantom including a waterproof housing containing a porous material, the porous material defining fluid paths between pores and tubular channels within the porous material; and a reservoir for use in a phantom, a pump mechanism for use within the bore of an MRI scanner, a phantom for use in an MRI scanner, and a method for calibrating a scanning device.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: April 9, 2024
    Assignee: GOLD STANDARD PHANTOMS LIMITED
    Inventors: Xavier Golay, Aaron Oliver-Taylor, Tom Hampshire
  • Patent number: 11953572
    Abstract: A method for ascertaining a magnetic field of at least one magnetic coil unit of a magnetic resonance apparatus, a magnetic resonance apparatus, and a computer program product are provided. According to the method, the magnetic field is generated by the at least one magnetic coil unit. A plurality of magnetic field vectors are detected at different positions of the magnetic field by a magnetic field sensor unit, where each magnetic field vector of the plurality of magnetic field vectors describes a strength, such as a magnitude, and a direction of the magnetic field at the respective position. The magnetic field is ascertained. To ascertain the magnetic field based on the plurality of magnetic field vectors, a model of a vector field is ascertained.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: April 9, 2024
    Assignee: Siemens Healthineers AG
    Inventor: Stefan Popescu
  • Patent number: 11953522
    Abstract: A probe head for a testing apparatus integrated on a semiconductor wafer is disclosed having a first plurality of contact probes having a first transversal diameter, a second plurality of micro contact probes having a second transversal diameter, smaller than the first transversal diameter, and a flexible membrane having conductive tracks for connecting a first plurality contact probe with a corresponding second plurality micro contact probe. The second plurality contact probes are arranged between the testing apparatus and the flexible membrane, and the second plurality micro contact probes are arranged between the flexible membrane and a semiconductor wafer.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: April 9, 2024
    Assignee: TECHNOPROBE S.P.A.
    Inventors: Roberto Crippa, Stefano Felici
  • Patent number: 11940520
    Abstract: For a complex image to be complexly added, appropriate phase correction is executed by a simple method to prevent occurrence of an artifact in a signal region and to reduce noise in a background region. Two or more types of smoothing processing with different smoothing degrees are executed on a phase image of the complex image to obtain two or more types of smoothed phase images having different smoothing degrees. A weight for each of these smoothed phase images is calculated based on a signal value (SNR) of an intensity image, and addition is performed by a weight for each signal value to obtain a smoothed phase image for correction. After a phase of the complex image is corrected using the smoothed phase image, a phase-corrected complex image is complexly added. As a result, phase correction equivalent to phase correction in which a smoothing degree is weakened in the signal region and a smoothing degree is strengthened in the background region is realized.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: March 26, 2024
    Assignee: FUJIFILM Healthcare Corporation
    Inventors: Ryota Sato, Suguru Yokosawa, Toru Shirai, Kazuho Kamba, Yoshitaka Sato, Masahiro Takizawa
  • Patent number: 11940517
    Abstract: The invention relates to a method of Dixon-type MR imaging. It is an object of the invention to provide a method that enables efficient and reliable Dixon water/fat separation, in particular using a bipolar acquisition strategy, while avoiding flow-induced leakage and swapping artifacts. According to the invention, an imaging sequence is executed which comprises at least one excitation RF pulse and switched magnetic field gradients, wherein pairs of echo signals are generated at two different echo times (TE1, TE2) and during two or more different cardiac phases (AW1, AW2). The echo signals are acquired and phase images are reconstructed therefrom. A final diagnostic image is reconstructed from the echo signal data using water/fat separation, wherein regions of flow and/or or estimates of flow-induced phase errors are derived from the phase images to suppress or compensate for flow-induced leakage and/or swapping artifacts in the final diagnostic image.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: March 26, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Holger Eggers, Christian Stehning
  • Patent number: 11940482
    Abstract: An upper mechanism including a table provided with a placement surface of an inspection target, a lower mechanism configured to rotatably support the upper mechanism, and a lifting operation unit configured to be supported by the upper mechanism so as to be movable up and down are provided. The lower mechanism includes a rotation drive unit configured to rotate the upper mechanism, and a push-up force output unit configured to lift and lower the lifting operation unit. A transmission member with which a tip of the push-up force output unit can contact or separate is provided at a lower end of the lifting operation unit.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: March 26, 2024
    Assignee: NIDEC READ CORPORATION
    Inventor: Takashi Isa
  • Patent number: 11940464
    Abstract: One aspect of the present disclosure discloses a probe, including a probe body having a center axis defining a proximal end and a distal end and including an aperture in the distal end; a window affixed in the aperture, wherein the window is substantially optically transparent; and a flange adjoining the proximal end of the probe body, the flange including a sealing surface and a sealing edge, wherein the flange separates an in-process portion of the probe from an ex-process portion of the probe, the in-process portion including at least the probe body, the sealing surface and the sealing edge, where at least the in-process portion of the probe consists essentially of an austenitic stainless steel material. Further aspects include a computer product configured to execute a method employing the probe.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: March 26, 2024
    Assignee: Endress+Hauser Optical Analysis, Inc.
    Inventors: Carsten Uerpmann, Michael Gordon Stidham
  • Patent number: 11940521
    Abstract: Disclosed is a medical system (100, 300, 500, 700) comprising: a memory (128) storing machine executable instructions (130); a processor (122) configured for controlling the medical system; and a pilot tone system (106). The pilot tone system comprises a radio frequency system (108) comprising multiple transmit channels (110) and multiple receive channels (112). The multiple transmit channels are configured for each transmitting unique pilot tone (132) signals via multiple transmit coils. The multiple receive channels are configured for receiving multi-channel pilot tone data (134) via multiple receive coils.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: March 26, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Gunther Leussler, Christian Findeklee, Jan Jakob Meineke, Peter Vernickel, Peter Koken
  • Patent number: 11940510
    Abstract: A method for preparing an NMR material, comprising generating parahydrogen in gas or liquid form at a first location; transporting the parahydrogen away from the first location; mixing a precursor compound including a metabolite component with a catalyst for hydrogenation; hydrogenating the precursor compound using the parahydrogen; transferring polarization in the precursor compound to a nuclear spin of the metabolite component; cleaving a side arm of the precursor compound in a chemical reaction, with the metabolite molecule being one of the products of the reaction; separating the metabolite molecule from the catalyst for hydrogenation and other products of the reaction; and generating metabolite molecules for use in an MRI scanner by extracting a sample of the metabolite molecule having at least 5% polarization.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: March 26, 2024
    Assignees: NVision Imaging Technologies Gmbh, Universität Ulm
    Inventors: Ilai Schwartz, Michael Keim, Martin Plenio, Benedikt Tratzmiller
  • Patent number: 11933867
    Abstract: Temperature control system for an NMR sample tube (22) using a temperature control device (20) with an interior (21) delimiting a cylindrical wall (39) in the radially outward direction and a plurality of flow channels for temperature-controlling fluid running radially around the interior, of which the radially outermost flow channel (28) is delimited to the outside by a wall (29), and the innermost flow channel (31) by a wall (30) and connected to one another by a first fluid passage (34). The innermost flow channel has a second fluid passage (36) to the interior and the outermost flow channel has a fluid inlet (32). During operation, the wall delimiting the interior in the radially outward direction is temperature-controlled by the fluid so that: abs (TU?TW)?abs (TU?TFD), where TW is the wall temperature, TFD is the fluid temperature at the first fluid passage and TU is the ambient temperature.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: March 19, 2024
    Assignee: BRUKER SWITZERLAND AG
    Inventor: Daniel Schmidig
  • Patent number: 11933871
    Abstract: According to one embodiment, MRI apparatus includes processing circuitry and an imaging device. The processing circuitry is configured to acquire at least one of body size information relating to a size of an object and breath-hold information relating to a breath-holdable time of the object. The processing circuitry is further configured to determine an imaging condition to be performed on the object based on the at least one of the body size information and the breath-hold information. The imaging device performs imaging of the object in accordance with the determined imaging condition.
    Type: Grant
    Filed: August 12, 2022
    Date of Patent: March 19, 2024
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Shinya Ozawa, Takeshi Ishimoto
  • Patent number: 11921132
    Abstract: An anisotropic conductive sheet according to the present invention comprises an insulating layer and a plurality of conductive layers. The insulating layer is elastic, and has a first surface that is positioned on one side in the thickness direction, a second surface that is positioned on the other side in the thickness direction, and a plurality of through holes that penetrate the layer from the first surface to the second surface. The conductive layers are respectively arranged on the inner wall surfaces of the plurality of through holes. The insulating layer comprises an elastic layer that is formed of a crosslinked product of an elastomer composition, and a heat-resistant resin layer that is formed of a heat-resistant resin composition that has a higher glass transition temperature than the crosslinked product of an elastomer composition.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: March 5, 2024
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Katsunori Nishiura, Taichi Koyama, Daisuke Yamada
  • Patent number: 11921175
    Abstract: According to one embodiment, an arrayed structure includes a cylindrical-shaped conductor layer and a cylindrical-shaped layer stack. The cylindrical-shaped layer stack is arranged on an inner periphery of the conductor layer and a plurality of frequency selective surfaces are arranged in layers and stacked. Each of the frequency selective surfaces has a plurality of elements which are periodically arranged. Each element of the plurality of elements is formed in such a manner that at least a portion of an edge of a first element that faces an adjacent element in the same layer is closer to a center of the first element than another portion of edge.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: March 5, 2024
    Assignee: Canon Medical Systems Corporation
    Inventors: Takafumi Ohishi, Sadanori Tomiha
  • Patent number: 11921176
    Abstract: A magnetic resonance imaging device may include a field generator configured to provide a magnetic field in an imaging volume of the magnetic resonance imaging device. The field generator may include at least one magnet that confines the imaging volume in at least one spatial direction. The at least one magnet may be curved in such a way that a perpendicular distance between a line oriented along a direction of access to the imaging volume and a surface directed towards the imaging volume of the at least one magnet varies in the direction of access to the imaging volume.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: March 5, 2024
    Assignee: Siemens Healthcare GmbH
    Inventors: Andreas Krug, Michael Mallett
  • Patent number: 11916474
    Abstract: Electrical converters of the present disclosure feature a boost circuit that is fully integrated with a three phase bridge rectifier to allow for obtaining a pulsed voltage at the rectifier output. Actively switchable semiconductor switches of the boost circuit are controlled by pulse width modulation (PWM) control signals to obtain the pulsed voltage. PWM of this pulsed voltage allows control of two out of three currents at the three input terminals of the rectifier, i.e., the currents at the phase inputs having the highest and the lowest voltage levels of the three phase input voltage.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: February 27, 2024
    Assignee: PRODRIVE TECHNOLOGIES INNOVATION SERVICES B.V.
    Inventor: Jordi Everts
  • Patent number: 11899083
    Abstract: The present invention is directed to a RF transmit system (1) for a magnetic resonance examination system where it is intended to provide a solution for the problem of rapidly switching between operation modes of different peak power requirements at good power efficiencies. For this purpose the RF transmit system (1) comprises at least one RF channel (14) wherein the RF channel (14) has an RF amplifier (3), at least two power supply devices (4, 5) wherein each of the power supply devices (4, 5) is configured to supply a voltage to the amplifier (3). The RF transmit system (1) further comprises a DC switch (8) configured to switch the voltage supplied to the amplifier (3) between the power supply devices (4, 5) and a controller (2) configured to switch the voltage based on sensor data.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: February 13, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Peter Vernickel, Christoph Leussler, Ingo Schmale, Jochen Keupp
  • Patent number: 11896362
    Abstract: A medical image processing apparatus according to the present embodiment includes processing circuitry. The processing circuitry inputs a first magnetic resonance image reconstructed with super-resolution processing on magnetic resonance data and a second magnetic resonance image obtained by imaging the same object as that of the first magnetic resonance image and with artifacts suppressed compared with the first magnetic resonance image, to a leaned model, the learned model being configured to output a third magnetic resonance image having the same resolution as that of the first magnetic resonance image and with the artifacts suppressed, generates the third magnetic resonance image based on the first magnetic resonance image and the second magnetic resonance image, using the learned model.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: February 13, 2024
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventor: Hideaki Kutsuna
  • Patent number: 11896359
    Abstract: The present disclosure relates to a multi-channel magnetic resonance imaging RF coil (114) with at least four channels and comprising a coil element for each of the channels, the RF coil (114) further comprising for each coil element a socket (300-306) that is electrically coupled to said coil element via a respective first transmission line (209), each socket (300-306) being adapted for receiving a plug for providing an RF signal via the respective first transmission line (209) to the respective coil element, wherein with respect to a predefined RF signal the differences in electrical length between any of the transmission lines is k?/4 where k is an integer and ? is the wavelength of the RF signal.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: February 13, 2024
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Ingo Schmale
  • Patent number: 11892529
    Abstract: A transition metal dichalcogenides device includes a substrate, a bottom layer of boron nitride, a tungsten diselenide monolayer on the bottom layer of boron nitride, a top layer of boron nitride on the tungsten diselenide monolayer such that the bottom and top layers of boron nitride at least partially encapsulate the tungsten diselenide monolayer, a source electrode on the substrate, a drain electrode on the substrate, and a top gate electrode on the top layer of boron nitride. The tungsten diselenide monolayer is configured to reveal excitons when at least one of a K valley and a K? valley of the tungsten diselenide monolayer is exposed to excitation photon energy and an external magnetic field. The excitons are giant valley-polarized Rydberg excitons in excited states ranging from 2s to 11s when the external magnetic field is in the range of about ?17 T to about 17 T.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: February 6, 2024
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Sufei Shi, Tianmeng Wang
  • Patent number: 11883148
    Abstract: A system and method for performing magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), or magnetic resonance spectroscopy imaging (MRSI) at multiple resonant frequencies using a coil system. The coil system includes at least one conductive loop and a capacitor forming a radiofrequency (RF) resonant antenna and a tuning-matching circuit electrically connected to the RF resonant antenna to operate at multiple resonant frequencies across a desired operational range. The coil system also includes two legs electrically connecting the tuning-matching circuit to the RF resonant antenna and having a length selected to generate at least two selected resonant frequencies with a selected frequency difference.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: January 30, 2024
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Wei Chen, Guangle Zhang, Wei Zhu, Xiao-Hong Zhu