Patents Examined by G. M. Hyder
  • Patent number: 11085979
    Abstract: Systems and methods for generating an image of a subject using a magnetic resonance imaging (MRI) device may be provided. The method may include obtaining a radial sampling scheme including a plurality of radial lines that each pass through a center of k-space. The method may include selecting the plurality of radial lines of the radial sampling scheme. Each of the plurality of radial lines may be selected in a random and unrepeatable manner. The method may include acquiring k-space data along the selected radial lines. The method may include reconstructing at least one image of the subject based on the acquired k-space data.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: August 10, 2021
    Assignee: UIH AMERICA, INC.
    Inventors: Jingyuan Lyu, Yu Ding, Xiaomao Gong, Qi Liu, Jian Xu, Weiguo Zhang
  • Patent number: 11079448
    Abstract: A system and method is provided for correcting receiver bias during quantitative proton density mapping with magnetic resonance fingerprinting (MRF). The method comprises acquiring MRF data from a region of interest in a subject by performing a pulse sequence using a series of varied sequence blocks to elicit a series of signal evolutions. The method further comprises comparing the MRF data to a MRF dictionary to simultaneously map proton density and another tissue property from the region of interest, the proton density map having a proton density signal and a receiver sensitivity profile signal. The method also includes quantifying the proton density signal and the receiver sensitivity profile signal using parameters provided by the proton density map and the tissue property map, and generating a quantitative map from the region of interest based on the proton density signal.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 3, 2021
    Assignee: Case Western Reserve University
    Inventors: Mark A. Griswold, Anagha Deshmane
  • Patent number: 11079707
    Abstract: A medium processing apparatus includes a processor that performs a process related to a medium. The medium processing apparatus includes a discharging section, an operation section, and an operation controller. The discharging section discharges the medium. The operation section is disposed downstream of the discharging section in a discharging direction and includes a touch sensor. The discharging direction is a direction in which the discharging section discharges the medium. The touch sensor detects an operation input. The operation controller limits, on the basis of size information, detection operation performed by the touch sensor. The size information indicates information related to a medium size of the medium.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 3, 2021
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Iori Kokubo, Kenichi Funatsu
  • Patent number: 11073584
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes imaging control circuitry and processing circuitry. The imaging control circuitry acquires MR signals in accordance with a first pulse sequence set in an imaging protocol. The processing circuitry determines, during MR signal acquisition according to the first pulse sequence, whether or not additional acquisition of MR signals is necessary based on a determination of image quality based on the acquired MR signals, and if necessity of additional acquisition is determined, adds a second pulse sequence for the additional acquisition to the imaging protocol. The imaging control circuitry acquires MR signals in accordance with the added second pulse sequence. The processing circuitry reconstructs an MR image based on the MR signals acquired through the first pulse sequence and the second pulse sequence.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 27, 2021
    Assignee: Canon Medical Systems Corporation
    Inventor: Hidenori Takeshima
  • Patent number: 11067656
    Abstract: In a method for operating an MRI device, image data is acquired using a spin echo sequence with an additional readout per pulse train for acquiring correction data. By comparing subsequent correction data of later pulse trains to reference data acquired during a first pulse train of the sequence a difference indicating a parameter shift is determined. A corresponding compensation is then automatically determined in dependence on the difference and is applied to a set of predetermined parameters for at least a respective next pulse train and/or to the image data acquired in at least a respective next pulse train of the sequence.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: July 20, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Paul, Mario Zeller
  • Patent number: 11067650
    Abstract: An enclosure for a magnetic resonance (MR) local coil and an MR local coil including the enclosure are provided. The enclosure has a first enclosure shell and a second enclosure shell. The first enclosure shell is arranged opposite the second enclosure shell. The enclosure is configured such that an MR local coil is positionable between the first enclosure shell and the second enclosure shell.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: July 20, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Andreas Greiser, Stephan Zink
  • Patent number: 11067937
    Abstract: An image forming apparatus includes a power switch, a power supply circuit, a power supply control unit, and a main control unit that sends a control signal to the power supply control unit and allows the power supply control unit to perform the power supply process based on the control signal. The power supply control unit starts to count pressing time as an elapsed time while the power switch is kept pressed. If the pressing time reaches a predetermined time without a change in the control signal, the power supply control unit forcibly starts a power shutdown process. If the control signal changes before the pressing time reaches the predetermined time, the power supply control unit starts the power shutdown process after receiving from the main control unit the control signal requesting for the power shutdown process.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: July 20, 2021
    Assignee: KYOCERA DOCUMENT SOLUTIONS INC.
    Inventor: Yoshiaki Tamura
  • Patent number: 11067654
    Abstract: The present disclosure is related to systems and methods for determining a field map in magnetic resonance imaging (MRI). The method includes obtaining at least three images. Each may be acquired at one of at least three echo times by an MRI device via scanning a subject. The at least three echo times may define multiple pairs of adjacent echo times. Each of the multiple pairs of adjacent echo times may have a time difference between the adjacent echo times. At least two of the time differences may be different. The method includes determining a target function with an off-resonance frequency as an independent variable. The target function includes a phase deviation term and a sparsity constraint term.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: July 20, 2021
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Yuan Zheng, Yongquan Ye, Yu Ding
  • Patent number: 11067652
    Abstract: A radio frequency coil according to an embodiment configured to receive a magnetic resonance signal from a subject by a plurality of coil elements including a first coil element and a second coil element. The first coil element and the second coil element are supported by a first housing and a second housing, the first housing and the second housing being rigid. The first housing and the second housing are connected by a flexible connector. The first coil element overlaps the second coil element at least part of the connector.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: July 20, 2021
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventor: Masahiro Fukushima
  • Patent number: 11061089
    Abstract: A magnetic resonance imaging (MRI) system, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, electromagnetic shielding provided to attenuate at least some electromagnetic noise in an operating environment of the MRI system, and an electrical conductor coupled to the electromagnetic shielding and configured to electrically couple to a patient during imaging of the patient by the MRI system. The magnetics system may include at least one permanent B0 magnet configured to produce a B0 magnetic field for an imaging region of the MRI system. The B0 magnetic field strength may be less than or equal to approximately 0.2 T.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: July 13, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Eddy B. Boskamp, Jeremy Christopher Jordan
  • Patent number: 11047940
    Abstract: The present invention provides a passive radio frequency (RF) shim resonator (144) for field homogenization of an RF field emitted by an RF antenna device (140) of a magnetic resonance (MR) imaging system (110), whereby the passive RF shim resonator (144) has a first resonating capability and a second resonating capability, and the passive RF shim resonator (144) comprises a switching device, whereby the switching device is adapted to switch between the first and the second resonating capability in accordance with a TX-mode and a RX-mode of the RF field emitted by the RF antenna device (140) of the MR imaging system (110). The present invention further provides a patient bed (142) or a patient mattress for use in a magnetic resonance imaging (MRI) system (110), whereby the patient bed (142) or the patient mattress comprises an above passive RF shim resonator (144).
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: June 29, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Christian Findeklee, Christoph Leussler
  • Patent number: 11048186
    Abstract: An image forming apparatus includes a photoconductor drum, a charging device, an exposure device, a development device, and an exposure position changing unit. The charging device is configured to charge the photoconductor drum. The exposure device is configured to irradiate the photoconductor drum and thereby form an electrostatic latent image on the photoconductor drum. The development device is configured to cause toner to adhere to the electrostatic latent image on the photoconductor drum in a two-component-development manner. The exposure position changing unit is configured to change, on the photoconductor drum, an exposure position of the exposure device to a position getting close to the development device from an exposure position for print image development when electric power cutoff is detected.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: June 29, 2021
    Inventor: Hironori Yamauchi
  • Patent number: 11041921
    Abstract: In one embodiment, an MRI apparatus includes: a scanner that is provided with at least an RF coil and a gradient coil and is configured to acquire a magnetic resonance (MR) signal emitted from an object in response to applications of an RF pulse outputted from the RF coil and a gradient magnetic field generated by the gradient coli; and processing circuitry configured to reconstruct a diagnostic image of the object based on the MR signal, generate distortion correction data for correcting a non-linear characteristic of the gradient magnetic field to a linear characteristic that is defined by gradient magnetic field strength at a correction position away from a magnetic field center of the gradient coil and distance from the magnetic field center to the correction position, and correct the diagnostic image by using the distortion correction data.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 22, 2021
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Yoshitomo Sakakura, Hidekazu Tanaka
  • Patent number: 11029382
    Abstract: Techniques are described for generating an MR image of an object using a multi spin-echo based imaging sequence with a plurality of k space segments using a preparation pulse. The technique included acquiring a first k-space dataset of the object using a first echo time and a first delay after the preparation pulse before the several spin-echoes are acquired. The technique further includes acquiring a second k space dataset of the object using a second echo time and a second delay after the preparation pulse, with at least one of the second echo time and the second delay time being different from the corresponding first echo time and the first delay time, generating a combined k space, and generating the MR image based on the combined k space dataset.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: June 8, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, Dominik Paul, Mario Zeller
  • Patent number: 11029628
    Abstract: An image forming apparatus includes an image forming device, a heater, and a controller. The image forming device is configured to generate a laser scanning beam based on the image data to form a toner image on a sheet. The heater is configured to heat the sheet. The heater includes heater elements arranged in a direction corresponding to the main scanning direction of the laser scanning. The controller is configured to selectively control the heater elements to be energized at an energization start timing based on the image data and a signal from the image forming device indicating a start of scanning by the laser scanning beam in the main scanning direction.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: June 8, 2021
    Assignee: TOSHIBA TEC KABUSHIKI KAISHA
    Inventor: Satoshi Hasegawa
  • Patent number: 11029377
    Abstract: A method, device, and system for reducing inhomogeneity in an imaging magnetic field during magnetic resonance imaging is described. The method includes generating a corrective magnetic field during imaging, the corrective magnetic field having a first magnetic field component and a second magnetic field component with a phase separation therebetween. The first and second components are generated according to a stability parameter decomposed from a stability field that correct an instability identified within the imaging magnetic field.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: June 8, 2021
    Assignee: Synaptive Medical Inc.
    Inventors: Ian Connell, Chad Harris, Geron Bindseil, Andrew T. Curtis
  • Patent number: 11016156
    Abstract: A plurality of sets of k-space data each of the same image region of a subject but having different contrasts are obtained. A sparse image coding procedure is performed to reconstruct a plurality of MR images each corresponding to one of the sets of k-space data. This involves solving an optimization problem comprising a data consistency iteration step used to generate the reconstructed MR images; and a denoising iteration step applied to the reconstructed MR images generated during the data consistency iteration step. The denoising iteration step includes performing a 2D/3D block matching operation to identify similar patches across the reconstructed MR images, and using the similar patches across the reconstructed MR images in a sparsifying operation to provide sparse representations of the reconstructed MR images. The sparse representations are used as an input to the data consistency iteration step.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: May 25, 2021
    Assignees: Siemens Healthcare Limited, King's College, London
    Inventors: Aurelien Bustin, Rene Botnar, Claudia Prieto, Radhouene Neji
  • Patent number: 11009573
    Abstract: A liquid-state nuclear-magnetic-resonance measurement cell includes a reservoir for a liquid medium; a fluidic circuit connected to the reservoir and comprising a measurement chamber; a gas injector opening into the fluidic circuit, at a distance from the measurement chamber; and a coil encircling the measurement chamber; wherein it also comprises at least one capacitive element forming, with the coil, an electromagnetic resonator; and in that it has a shape allowing its introduction into a nuclear-magnetic-resonance probe in replacement of an assembly formed by a nuclear-magnetic-resonance tube and a spinner bearing the tube, the coil encircling the measurement chamber being then positioned so as to couple by induction to at least one radiofrequency coil of the probe. Nuclear-magnetic-resonance measurement system comprising such a measurement cell. Magnetic-resonance measurement method using such a cell is also provided.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 18, 2021
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Guillaume Carret, Thomas Berthelot, Patrick Berthault
  • Patent number: 11003107
    Abstract: A developing cartridge 1 may include a developing roller including a developing roller shaft, a casing capable of containing a developer material, and a developing electrode or a member configure to be electrically connected to the developing roller shaft. The developing electrode or the member has a first end portion configured to be electrically connected to the developing roller shaft and a second end portion located farther away from the developing roller shaft than the first end portion. The second end portion is farther away in the second direction from the one end of the casing than the first end portion is from the one end of the casing. The developing electrode has a first hole extending in the second direction between the first end portion and the second end portion.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: May 11, 2021
    Assignee: BROTHER KOGYO KABUSHIKI KAISHA
    Inventor: Nao Itabashi
  • Patent number: 10996295
    Abstract: Provided is a noise source search device to be applied to an MM apparatus that obtains an NMR signal generated from a subject disposed in a static magnetic field by applying an RF pulse of a high frequency coil and a gradient magnetic field pulse of a gradient magnetic field coil to the subject, the device including: a reference antenna and a probe antenna that measure a noise generated in the MRI apparatus; a noise generation condition specification unit that specifies an axis and a drive frequency as a noise generation condition generated in the MRI apparatus, on the basis of a noise intensity of the noise that is measured by the reference antenna; and a noise generation site specification unit that drives the gradient magnetic field coil under the noise generation condition that is specified by the noise generation condition specification unit.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: May 4, 2021
    Assignee: HITACHI, LTD.
    Inventor: Takeshi Yatsuo