Patents Examined by Gailene R. Gabel
  • Patent number: 7824874
    Abstract: The present invention relates a method for the enumeration of in vivo gene mutation. The method utilizes differential staining of GPI-anchor deficient erythrocyte populations to distinguish between wild-type and pig-a gene mutants. Quantitative analyses can be conducted on erythrocytes and/or reticulocytes, and is based upon fluorescent emission and light scatter following exposure to an excitatory light source. Counting of mutant erythrocytes or reticulcoytes relative to the number of total erythrocytes or reticulocytes can be used to assess the DNA-damaging potential of an exogenous chemical agent, the DNA-damaging potential of an exogenous physical agent, the effects of an exogenous agent which can modify endogenously-induced DNA damage, and the effects of an exogenous agent which can modify exogenously-induced DNA damage. Kits for practicing the invention are also disclosed.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: November 2, 2010
    Assignee: Litron Laboratories, Ltd.
    Inventor: Stephen D. Dertinger
  • Patent number: 7824927
    Abstract: Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: November 2, 2010
    Assignee: George Mason Intellectual Properties, Inc.
    Inventors: Victor Morozov, Charles L. Bailey, Melissa R. Evanskey
  • Patent number: 7807397
    Abstract: The use of copeptin as diagnostic marker for the determination of the release of vasopressin, especially in connection with disorders associated with non-physiological alterations of vasopressin release from the neurohypophysis, especially for detection and early detection, diagnosing and monitoring of the course of cardiovascular diseases, renal and pulmonary diseases as well as shock, including septic shock, sepsis and diseases/disorders of the central nervous system and neurodegenerative diseases.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: October 5, 2010
    Assignee: B.R.A.H.M.S Aktiengesellschaft
    Inventors: Andreas Bergmann, Joachim Struck
  • Patent number: 7807389
    Abstract: Disclosed are compositions and methods related to joint inflammation diseases. Disclosed is the relationship between osteoclasts and inflammatory joint diseases and osteoclast precursor cells.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: October 5, 2010
    Assignee: University of Rochester
    Inventors: Christopher T. Ritchlin, Sally A. Haas-Smith, Edward M. Schwarz
  • Patent number: 7803523
    Abstract: This invention is directed to a method for preparation of a biological sample for measurement of protein epitopes that allows for the preservation of intracellular protein epitopes and detection of signal transduction pathways based on the ability to capture transient activation states of the epitopes. The method provided by the invention allows for the rapid fixation of biological samples containing red blood cells, to ensure that epitopes of signal transduction molecules and other intracellular protein epitopes are preserved in the active state. The method of the invention further allows for lysis of red blood cells, thereby making it a useful method for cytometric analysis of biological samples, including, for example, whole blood, bone marrow aspirates, peritoneal fluids, and other red blood cell containing samples. The invention also provides a method to recover or “unmask” epitopes on intracellular antigens that have been made inaccessible by the cross linking fixative necessary to fix the sample.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: September 28, 2010
    Assignees: University Health Network, Beckman Coulter, Inc.
    Inventors: Sue Chow, David Hedley, T. Vincent Shankey, Patricia Grom
  • Patent number: 7795024
    Abstract: The present invention provides an apparatus and methods for expansion of hematopoietic stem cell numbers. The stem cells are cultured and differentiated cells and endogenous growth factors are removed (depleted), permitting long term culture and expansion of the stem cells. The hematopoietic stem cells are used in numerous therapeutic procedures.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: September 14, 2010
    Assignee: Insception Bioscience, Inc.
    Inventors: Gerard Madlambayan, Peter Zandstra
  • Patent number: 7790471
    Abstract: A diagnostic method and associated test kit for detecting an analyte residing in a test sample is provided. A sample membrane is utilized having a collection region and a detection region, the collection region having a known saturation volume for the intended test sample. A barrier is defined between the collection region and the detection region. The collection region is saturated with the test sample having a volume of less than about 100 microliters so that a known volume of the test sample is contained in the collection region. The barrier is removed from between the collection region and detection region of the membrane and a diluent is supplied to the collection region of the membrane to facilitate flow of the test sample from the collection region to the detection region of the membrane.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: September 7, 2010
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: James M. Takeuchi, Xuedong Song, Kaiyuan Yang, Ning Wei, Shawn R. Feaster
  • Patent number: 7785865
    Abstract: A membrane array used to detect one or more analytes from a small sample of fluid with high sensitivity is provided. The membrane array can be employed in various analytical devices and is especially useful for identifying analytes from whole blood with minimal or negligible background interference.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: August 31, 2010
    Assignee: ZBx Corporation
    Inventor: Shi Qinwei
  • Patent number: 7785536
    Abstract: The present invention provides a method for reducing undesirable light emission from a sample using at least one photon producing agent and at least one photon reducing agent (e.g. dye-based photon reducing agents). The present invention further provides a method for reducing undesirable light emission from a sample (e.g. a biochemical or cellular sample) with at least one photon producing agent and at least one collisional quencher. The present invention also provides a method for reducing undesirable light emission from a sample (e.g., a biochemical or cellular sample) with at least one photon producing agent and at least one quencher, such as an electronic quencher. The present invention also provides a system and method of screening test chemicals in fluorescent assays using photon reducing agents. The present invention also provides compositions, pharmaceutical compositions, and kits for practicing these methods.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: August 31, 2010
    Assignee: Life Technologies Corporation
    Inventors: Tom Knapp, Paul Negulescu, Timothy Rink, Roger Tsien, Gregory Zlokarnik
  • Patent number: 7785898
    Abstract: The present invention provides methods for identifying and/or enriching fetal cells from maternal blood, using as fetal cell markers the antibodies that the mother produces against paternally inherited fetal antigens. The fetal cell-maternal antibody complexes are identified and isolated using labelled agents that bind to the maternal antibodies. The present invention also provides fetal cells, isolated by use of said maternal antibodies, as a source of fetal DNA for prenatal genetic diagnosis of the fetus.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: August 31, 2010
    Assignee: Genetic Technologies Limited
    Inventor: Ralph M. Bohmer
  • Patent number: 7781172
    Abstract: A flow-through assay device for detecting the presence or quantity of an analyte residing in a test sample is provided. The device utilizes a detection zone and compensation zone within which are immobilized capture reagents. The present inventor has discovered that the presence of a compensation zone may enable the detection of an analyte over extended concentration ranges. In particular, the compensation zone facilitates the binding of probes that would otherwise bind within the interior of assay device or that would exhibit “self-quenching”.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: August 24, 2010
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: Xuedong Song
  • Patent number: 7781225
    Abstract: There is described an affinity-chromatography assay system comprising with an immobilized component containing a bio-reagent and a flowable component containing a complimentary bio-reagent characterized in that the immobilized component is supported on a dip strip or planar surface and the flowable component is adapted to flow down the dip strip of high density. There is also described a method of conducting an affinity-chromatography assay which comprises the use of such an assay system.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: August 24, 2010
    Assignee: University of Sunderland
    Inventor: Frederick John Rowell
  • Patent number: 7781227
    Abstract: Arrays of microparticle populations, each population labeled with a single fluorescent dye, are provided for use in multiplex assays. The populations form a virtual multidimensional array wherein each microparticle is identified by fluorescence intensity in two different fluorescence detection channels. The arrays are useful in a variety of assays, including multiplex, multi-analyte assays for the simultaneous detection of two or more analytes by, for example, flow cytometry, and a labeling reagents in, for example, microscopy. The use of singly-dyed microparticles to form multidimensional arrays greatly simplifies the creation of multiplex assays.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 24, 2010
    Assignee: Becton, Dickinson and Company
    Inventors: Majid Mehrpouyan, Diether J. Recktenwald, Rudolf Varro
  • Patent number: 7781226
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: August 24, 2010
    Assignee: The Board of Regents of the University of Texas System
    Inventors: John T. McDevitt, Nick Christodoulides, Pierre Floriano, Karri L. Ballard, Bruce Bernard, Glenn Simmons
  • Patent number: 7776612
    Abstract: The present invention is directed to a novel method for quantifying antigen, such as the amount expressed on a cell. The method comprises formulating an equation of correlation between the amount expressed of expressed antigen and the intensity of fluorescence from fluorescent labelled antibody.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: August 17, 2010
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Shigeto Kawai, Shinichiro Iida, Yasuo Koishihara
  • Patent number: 7776617
    Abstract: Dipstick tests for detecting analyte are described. In a preferred embodiment, a multiple biotinylated antibody capable of binding analyte is bound to an anti-biotin antibody labelled with colloidal gold and wicked up the dipstick with test solution thought to contain analyte. Complex formed between analyte, biotinylated anti-analyte antibody, and colloidal gold labelled anti-biotin antibody is captured at a capture zone of the dipstick. Presence of colloidal gold label at the capture zone indicates the presence of analyte in the test solution. The sensitivity of analyte detection using such methods is an order of magnitude higher than for comparable methods in which biotinylated anti-analyte antibody bound to analyte is wicked up the dipstick in a first step, and a colloidal gold labelled anti-biotin antibody is wicked up the dipstick in a separate step. Kits for performing the tests of the invention are also described.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: August 17, 2010
    Assignee: Diagnostics for the Real World, Ltd.
    Inventors: Helen Lee, Ling Huang, Magda Anastassova Dineva, Hsiang Yun Hu
  • Patent number: 7776605
    Abstract: The invention provides among other things methods and kits based on assaying for cardiac troponin autoantibodies, either in conjunction with an assay for cardiac troponin and/or as an independent indicator of cardiac pathology, such as myocarditis, cardiomyopathy, and/or ischemic heart disease. Assay methods of the invention can be employed among other things to identify cardiac pathology, or risk thereof, in subjects who have an autoimmune disease or who are related to an individual with an autoimmune disease. In particular embodiments, the invention also provides a method of determining whether a subject having, or at risk for, a cardiac pathology is a candidate for immunosuppressive therapy or immunoabsorption therapy. The invention also provides kits and kit components that are useful for performing the methods of the invention.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: August 17, 2010
    Assignee: Abbott Laboratories
    Inventors: Phillip G. Mattingly, Maciej Adamczyk, Roy Jeffrey Brashear, Robert C. Doss
  • Patent number: 7776583
    Abstract: Disclosed are methods for conducting assays of samples, such as whole blood, that may contain cells or other particulate matter. Also disclosed are systems, devices, equipment, kits and reagents for use in such methods. One advantage of certain disclosed methods and systems is the ability to rapidly measure the concentration of an analyte of interest in blood plasma from a whole blood sample without blood separation and hematocrit correction.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: August 17, 2010
    Assignee: Meso Scale Technologies, LLC
    Inventors: Mark A. Billadeau, Jeff D. Debad, Eli N. Glezer, Jonathan K. Leland, Charles A. Wijayawardhana
  • Patent number: 7772011
    Abstract: Disclosed is a rapid, non-invasive and highly specific and sensitive diagnostic assay for the identification of individuals with autoimmune chronic urticaria, which makes use of CD203c, and in some embodiments, additional proteins, as a marker for the disease. Test kits for diagnosis of an individual suspected of having autoimmune chronic urticaria are also disclosed. Also disclosed are a method of identifying compounds useful for treating autoimmune chronic urticaria and a method of treating autoimmune chronic urticaria.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: August 10, 2010
    Inventors: Ronald Joseph Harbeck, Karen Mary Andrews, Donald MacGlashan, Jr.
  • Patent number: 7767465
    Abstract: The present invention relates to compositions for improving assay accuracy for plasma samples by decreasing or eliminating false results due to platelet interference. The compositions of the present invention comprise compositions that include a platelet interference reducing agent in an amount effective to decrease the platelet interference activity in the plasma sample, particularly platelet-rich plasma sample, to be analyzed. The most preferred platelet interference reducing agent of the present invention is 1-(1,3-Bis(hydroxymethyl-2,5-dioxoimidazolidin-4-iyl)-1,3-bis(hydroxymethyl) urea, also called “Diazolidinyl urea” or “DZU”.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: August 3, 2010
    Assignee: Siemens Healthcare Diagnostics Inc
    Inventors: Bin Zhang, E. Sabrinah Chapman-Montgomery, Edward P. Kang