Patents Examined by Gary Benzion
  • Patent number: 10760074
    Abstract: A composition for use in amplifying cDNA synthesized by a reverse transcription reaction and detecting RNA that serves as a template of the reverse transcription reaction, the composition containing a thermostable DNA polymerase, a thermostable ribonuclease H, and an intercalating dye. Since the composition of the present invention can suppress the influences to the nucleic acid amplification reaction by RNA that serves as a template for cDNA synthesis, the composition is useful in the detection of RNA, and more useful in quantification of RNA having a desired sequence by real-time RT-PCR.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 1, 2020
    Assignee: TAKARA BIO INC.
    Inventors: Kanako Usui, Takashi Uemori, Hiroyuki Mukai, Ikunoshin Kato
  • Patent number: 10758908
    Abstract: A self-metering reaction device has a sample reservoir, configured to accept a varying amount of fluid; a metering reservoir, configured to be a subportion of the sample reservoir and to hold a reaction amount of the fluid; a reaction chamber fluidly connected to the metering reservoir; and a plunger comprising a tip configured to make a seal with the metering reservoir so that the reaction amount of the fluid is sealed within the metering reservoir when the plunger is in contact with the metering reservoir. The plunger can be configured to plunge the sealed reaction amount of the fluid from the metering reservoir into the reaction chamber.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 1, 2020
    Assignee: Tetracore, Inc.
    Inventors: William M. Nelson, Aymeric Randanne de Vazeille, Kyle Armantrout
  • Patent number: 10745711
    Abstract: Compositions and methods related to transgenic high oleic acid/ALS inhibitor-tolerant soybean plants are provided. Specifically, the present invention provides soybean plants having a DP-305423-1 event which imparts a high oleic acid phenotype and tolerance to at least one ALS-inhibiting herbicide. The soybean plant harboring the DP-305423-1 event comprises genomic/transgene junctions having at least the polynucleotide sequence of SEQ ID NO:8, 9, 14, 15, 20, 21, 83 or 84. The characterization of the genomic insertion site of the DP-305423-1 event provides for an enhanced breeding efficiency and enables the use of molecular markers to track the transgene insert in the breeding populations and progeny thereof. Various methods and compositions for the identification, detection, and use of the soybean DP-305423-1 events are provided.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 18, 2020
    Assignee: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Anthony J Kinney, Kent Brink, Robert F. Cressman, Jr., Knut Meyer, Kevin L. Stecca, Natalie N. Weber, Cathy Xiaoyan Zhong
  • Patent number: 10731227
    Abstract: Provided herein include compositions comprising a primer having the nucleic acid sequence of ACeIN-F3_c, a primer having the nucleic acid sequence of ACeIN-B3_a, a primer having the nucleic acid sequence of ACeIN-B3_b, a primer having the nucleic acid sequence of ACeIN-FIP_e, a primer having the nucleic acid sequence of ACeIN-FIP_f, a primer having the nucleic acid sequence of ACeIN-BIP (or ACeIN-BIP-song), a primer having the nucleic acid sequence of ACeIN-LF; and a primer having the nucleic acid sequence of ACeIN-LB. Also provided are methods of detecting human immunodeficiency virus (HIV) nucleic acids in a sample comprising performing reverse transcription-based loop mediated isothermal amplification (RT-LAMP) on a sample using the previously disclosed compositions.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 4, 2020
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Changchun Liu, Scott Sherrill-Mix, Haim H. Bau, Frederic D. Bushman, Karen E. Ocwieja, Jinzhao Song
  • Patent number: 10704095
    Abstract: The purpose of the present invention is to provide a method and kit for highly precise DNA typing, in which ambiguity derived from phase ambiguity is eliminated. The present invention provides a method for the DNA typing of HLA, which is characterized by comprising: (1) a step of preparing a set of primers which can respectively anneal specifically to an upstream region and a downstream region of each of HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1 gene in the nucleotide sequence for the human genome, and a set of primers which can respectively anneal specifically to exon-2 and a 3?-side non-translated region in HLA-DRB1; (2) a step of carrying out the PCR amplification of a sample to be tested (DNA) using the sets of primers; (3) a step of determining the nucleotide sequence for a PCR-amplified product; and (4) an optional step of carrying out the homology search in a data base.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: July 7, 2020
    Assignee: GENODIVE PHARMA INC.
    Inventors: Takashi Shiina, Shingo Suzuki, Yuki Wada, Shigeki Mitsunaga, Hidetoshi Inoko
  • Patent number: 10689712
    Abstract: Compositions, reaction mixtures, kits and methods used in amplifying and detecting nucleic acids from various species of the class Mollicutes. Particular regions of the 23S rRNA or its gene have been identified as preferred targets for nucleic acid amplification reactions of a sample suspected containing at least one species of Mollicutes. Some oligomers comprise tag regions, target closing regions, promoter sequences, and/or binding moieties. Samples can be from any source suspected of containing a species of the class Mollicutes. Preferred sample sources include bioreactors, cell lines, cell culture wares and pharmaceutical manufacturing wares.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: June 23, 2020
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Shannon K. Kaplan, Kristin W. Livezey, Michael M. Becker, James J. Hogan
  • Patent number: 10676796
    Abstract: Disclosed are nucleic acid oligomers, including amplification oligomers, capture probes, and detection probes, for detection of a 16S rRNA or its encoding gene from bacterial species associated with bacterial vaginosis. Also disclosed are methods of specific nucleic acid amplification and detection using the disclosed oligomers, as well as corresponding reaction mixtures and kits.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: June 9, 2020
    Assignee: GEN-PROBE INCORPORATED
    Inventor: Damon K. Getman
  • Patent number: 10669594
    Abstract: Provided are compositions and methods useful to the determination of whether a microbial contaminant is present in a biological therapeutic production process. Specifically, an artificial positive amplification control plasmid and unique quantitative PCR detection probe are provided, which enables the rapid and real-time detection of a false positive result.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: June 2, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Serge Monpoeho, Sheldon Mink, Paul Vescio
  • Patent number: 10633712
    Abstract: The technology described herein relates to assays and methods for the diagnosis, prognosis, and/or treatment of melanoma, e.g. relating to measuring the level of neurophilin-2 (NRP-2) mRNA expressed in melanoma cells. In some embodiments, the level of NRP-2 can be normalized to the level of Melan-A (MART) mRNA.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: April 28, 2020
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Rhoda M. Alani, Byungwoo Ryu
  • Patent number: 10620202
    Abstract: The invention provides methods and kits for the rapid confirmation of an initial analyte test result. In a preferred embodiment, the process confirms the presence of a given microbial target in a mixed culture, or a mixed enrichment media, even when the competing organisms in the mix belong to related species, or are various biotypes of the same species.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: April 14, 2020
    Assignee: Institute for Environmental Health, Inc.
    Inventor: Mansour Samadpour
  • Patent number: 10604793
    Abstract: A cleavage-based real-time PCR assay method is provided. In general terms, the assay method includes subjecting a reaction mixture comprising a) PCR reagents for amplifying a nucleic acid target, and b) flap cleavage reagents for performing a flap cleavage assay on the amplified nucleic acid target to two sets of thermocycling conditions. No additional reagents are added to the reaction between said first and second sets of cycles and, in each cycle of the second set of cycles, cleavage of a flap probe is measured.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: March 31, 2020
    Assignee: EXACT SCIENCES DEVELOPMENT COMPANY, LLC
    Inventors: Rebecca Oldham-Haltom, Hongzhi Zou, Graham P. Lidgard, Michael J. Domanico, Hatim Allawi
  • Patent number: 10604798
    Abstract: A heating mechanism for use in DNA applications such as DNA amplification, extraction and sterilization is provided. Nanoparticles having photo-thermal properties are put in contact with a reaction mixture and irradiated with an activation light beam to activate these photo-thermal properties, thereby releasing heat. Nanoparticles of several types may be used. Use of the same nanoparticles or of different one to monitor the reaction using a different light beam is also presented.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: March 31, 2020
    Inventors: Philip Roche, Andrew Kirk, Lenore Beitel, Miltiadis Paliouras, Mark Trifiro, Vamsy Chodavarapu, Mohamed Najih, Joachim Thiemann
  • Patent number: 10590471
    Abstract: The invention comprises methods and compositions for enriching for a target nucleic acid with a single primer extension and low-bias limited amplification.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: March 17, 2020
    Assignee: Roche Sequencing Solutions, Inc.
    Inventor: Brian Christopher Godwin
  • Patent number: 10550438
    Abstract: Disclosed are methods for diagnosing Bacterial Vaginosis in a subject comprising performing an assay for the detection of any one or more of Lactobacillus sp., Gardneralla vaginalis, and Eggerthella sp. in a subject sample. Also disclosed are methods and compositions for detecting Lactobacillus sp., Gardneralla vaginalis, and/or Eggerthella nucleic acid in a sample.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: February 4, 2020
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Barbara Lynn Eaton, Damon Kittredge Getman, Traci Pawlowski
  • Patent number: 10538812
    Abstract: The present invention provides a means for efficiently amplifying the exons of PKD1 and PKD2 genes, and a primer set that can amplify all the exons of PKD1 and PKD2 genes under a single set of PCR conditions.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: January 21, 2020
    Assignee: OTSUKA PHARMACEUTICAL CO., LTD.
    Inventors: Kiyonori Katsuragi, Moritoshi Kinoshita, Daisuke Koga, Ryo Higashiyama
  • Patent number: 10526664
    Abstract: Provided herein are compositions and methods for diagnosing and characterizing tuberculosis infection. In particular, provided herein are compositions and methods for identifying drug resistant tuberculosis.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: January 7, 2020
    Assignee: Abbott Molecular Inc.
    Inventors: Hong Wang, Gregor W. Leckie, Vihanga Pahalawatta, Klara Abravaya, Joshua Kostera, Ning Tang, Andrea Frank
  • Patent number: 10508313
    Abstract: This disclosure provides oligomers, compositions, and kits for detecting and quantifying Hepatitis B virus (HBV), including different genotypes and variants thereof, and related methods and uses. In some embodiments, oligomers target the P and/or S open reading frames of HBV and are configured to provide substantially equivalent quantification of different genotypes and variants of HBV.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: December 17, 2019
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Kui Gao, Jeffrey M. Linnen
  • Patent number: 10508312
    Abstract: Disclosed are nucleic acid oligomers, including amplification oligomers, capture probes, and detection probes, for detection of Zika virus nucleic acid. Also disclosed are methods of specific nucleic acid amplification and detection using the disclosed oligomers, as well as corresponding reaction mixtures and kits.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: December 17, 2019
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Kui Gao, Jeffrey M. Linnen
  • Patent number: 10501790
    Abstract: At least one nucleic acid from a sulfate-reducing bacteria (SRB) may be extracted from an oilfield fluid and may be amplified by a PCR amplification method in the presence of at least one primer to form an amplification product. The primer(s) may be or include a sequence including, but not necessarily limited to, SEQ ID NO: 20, SEQ ID NO: 21, and mixtures thereof. The amplification product may be hybridized with a probe specific for a fragment of an alpha subunit of an APS gene, and a presence of hybridization and a degree of hybridization may be detected.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: December 10, 2019
    Assignee: Baker Hughes, a GE company, LLC
    Inventor: Crystal Lee
  • Patent number: 10415099
    Abstract: Disclosed are nucleic acid oligomers, including amplification oligomers, capture probes, and detection probes, for detection of a 16S rRNA or its encoding gene from bacterial species associated with bacterial vaginosis. Also disclosed are methods of specific nucleic acid amplification and detection using the disclosed oligomers, as well as corresponding reaction mixtures and kits.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: September 17, 2019
    Assignee: GEN-PROBE INCORPORATED
    Inventor: Damon K. Getman