Patents Examined by Gennadiy Mesh
  • Patent number: 8816041
    Abstract: Provided are a polyester polymerization catalyst with which the generation of foreign materials caused by the catalyst or mold pollution at the time of molding are reduced and polyesters having remarkably superior thermal stability and color tone can be obtained. Provided is a polyester polymerization catalyst produced by the reaction of a titanium compound and a mannitol in a molar ratio of titanium atom to mannitol of from 1:1 to 1:3. A method for producing a polyester employs the polyester polymerization catalyst.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: August 26, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Yoichiro Tanaka, Eri Hatano, Keisuke Honda
  • Patent number: 8791225
    Abstract: A method for making polyethylene terephthalate resin in which a titanium-nitride polycondensation catalyst is introduced during the initial stages of esterification or transesterification. The titanium-nitride polycondensation catalyst may be added to a mixture containing a terephthalate component and a diol component during the formation of a polyethylene terephthalate precursor. Subsequent polycondensation of the polyethylene terephthalate precursor forms a polyethylene terephthalate polymer.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: July 29, 2014
    Assignee: DAK Americas Mississippi Inc.
    Inventor: Carl Steven Nichols
  • Patent number: 8779082
    Abstract: The invention relates to an improved linear microdialysis probe comprising a continuous length of flexible tubing (1) having at least one window (4) formed therein, said window covering at least one part of the circumference of the tubing, while the remaining part forms at least one unbroken connection between a first end of said tubing and a second end of said tubing, said ends adapted to be attached to an inlet for perfusion liquid and the other end forming an outlet for the dialysate, said at least one window (4) exposing a tubular semipermeable membrane (2).
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: July 15, 2014
    Assignee: TORAY Industries, Inc.
    Inventors: Hua Qi, Keisuke Honda, Kunihiro Morimoto, Jun Sakamoto, Hiroji Kojima
  • Patent number: 8759565
    Abstract: Disclosed are processes to prepare monocarboxylic acid esters (mono- and/or diesters) of polytrimethylene ether glycol that are substantially free of residues from the catalyst used to produce the polytrimethylene ether glycol esters, as well as methods for their preparation and end uses thereof. The esters, such as the bis-2-ethylhexanoate esters, have uses as functional fluids.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: June 24, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Hari Babu Sunkara, Raja Hari Poladi, Gyorgyi Fenyvesi
  • Patent number: 8748561
    Abstract: Provided is a dehydroabietic acid polymer including a skeleton of the following formula (A) as a repeating unit: wherein L represents a divalent organic group. Methods for producing the dehydroabietic acid polymer are also provided. The dehydroabietic acid polymer has high resistance against moisture and water and high impact resistance. The dehydroabietic acid polymer can also be produced from a rosin-derived natural product.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 10, 2014
    Assignee: Fujifilm Corporation
    Inventors: Kozo Sato, Toshimitsu Sakuma
  • Patent number: 8735332
    Abstract: A method for preventing the formation of gas hydrates in an aqueous phase by adding esters of pyroglutamic acid in the quantities of from 0.01 to 2% by weight. The esters of pyroglutamic acid produced by esterifying at least one alcohols, comprising from 1 to 100 hydroxyl groups with pyroglutamic acid and/or glutamic acid, wherein the alcohol has no more than one ester group or no more than one carboxylic acid group.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 27, 2014
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Dirk Leinweber, Michael Feustel
  • Patent number: 8729212
    Abstract: Bioresorbable or biodegradable polymers formed from the monomers including sulphonyl diphenol, hydroxybenzoic acid and dicarboxylic acid. The dicarboxylic acid can include aliphatic dicarboxylic acid or a mixture of aliphatic dicarboxylic acid and aromatic dicarboxylic acid. Between 25 and 85 molar percent of the polymer is formed from the hydroxybenzoic acid, between 7.5 and 37.5 molar percent of the polymer is formed from the sulphonyl diphenol, and between 7.5 and 37.5 molar percent of the polymer is formed from the dicarboxylic acid. Polymers can be used for manufacturing fibers and composite devices.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: May 20, 2014
    Assignee: Smith & Nephew, Inc.
    Inventors: Anthony Dagger, De Oca Horacio Montes
  • Patent number: 8722846
    Abstract: The composition of a homopolymer of (phosphonyl) aromatic diester compound using a catalyst and a glycol is provided. Further, the composition of a copolymer of the (phosphonyl) aromatic diester compound using a catalyst, a glycol and a second diester is provided. These polymers find application as flame retardants during synthesis of various polymeric materials.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 13, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Neville Everton Drysdale, Fredrik Nederberg
  • Patent number: 8695752
    Abstract: Deep-drawn membranes formed of polyester or polycarbonate films, comprising units of Formula (I) and (II), useful for acoustic signal converters as microphones and speakers. The film can be produced by thermoplastic processes or solvent cast processes.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: April 15, 2014
    Assignee: tesa SE
    Inventors: Kerstin Metzler, Bernhard Müssig, Frank Virus
  • Patent number: 8674054
    Abstract: A polyester resin having a diol unit containing a unit derived from ethylene glycol and a unit derived from a diol represented by the following formula (I), and a dicarboxylic acid unit containing a unit derived from an aromatic dicarboxylic acid in an amount of 50 mol % or more; wherein the entire diol unit contains the unit derived from ethylene glycol in an amount of 40 to 99 mol %, and the unit derived from a diol represented by formula (I) in an amount of 1 to 60 mol %: wherein A represents an aromatic ring selected from the group consisting of benzene, naphthalene, anthracene, phenanthrene and pyrene; R1 represents a C1 to C12 alkyl group, a substituted or unsubstituted C6 to C12 aryl group or a halogen atom; n represents an integer of 0 to 4; and when plural R1s are present, R1s may be the same as or different from each other.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: March 18, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takuya Minezaki, Takeshi Hirokane, Dai Oguro
  • Patent number: 8658758
    Abstract: In the production of an aliphatic polyester by ring-opening polymerization of a cyclic ester, at least a latter period of polymerization is proceeded with by way of solid-phase polymerization, and the resultant aliphatic polyester is subjected to removal of residual cyclic ester. As a result, an aliphatic polyester with a minimized content of residual monomer is obtained.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: February 25, 2014
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Fuminori Kobayashi, Yukichika Kawakami, Kazuyuki Yamane, Yoshikazu Amano, Takashi Sato
  • Patent number: 8653232
    Abstract: A manufacturing method of polyethylene terephthalate including a step of melt polycondensation in presence of polycondensation catalyst represented by general Formula (I), wherein R1 represents an alkyl group having from 2 to 12 carbon atoms, and melt polycondensed polyethylene terephthalate has an intrinsic viscosity of from 0.48 to 0.53 dL/g and a terminal carboxyl number of from 14 to 22 mmol/kg; and a step of solid phase polycondensation to obtain solid phase polycondensed polyethylene terephthalate having an intrinsic viscosity of from 0.70 to 0.86 dL/g, and a terminal carboxyl number of less than 15 mmol/kg, followed by a step of applying an aqueous solution of at least one salt selected from the group consisting of acetate, carbonate, and sulfate of sodium, potassium, or cesium to the solid phase polycondensed polyethylene terephthalate, and then drying the polyethylene terephthalate, wherein the final content of sodium, potassium or cesium atom in dried polyethylene terephthalate is from 2 to 25 ppm.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: February 18, 2014
    Assignee: Teijin Fibers Limited
    Inventor: Shinya Konuma
  • Patent number: 8642717
    Abstract: The present invention is an aliphatic polyester resin in which a polyhydroxy acid skeleton is a main component, manufactured using a polymerization catalyst, characterized in that a specific organophosphorus compound is copolymerized in the resin. Activity of the polymerization catalyst contained in the aliphatic polyester resin of the present invention after the polymerization is well lowered and a lactide is hardly produced even by heating after the polymerization or after the manufacture.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: February 4, 2014
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Tomokazu Kusunoki, Toshifumi Unrinin, Osamu Morimoto
  • Patent number: 8637632
    Abstract: A method for producing a binder resin comprises polycondensing a polycondensable monomer by using a polycondensation catalyst that comprises: at least one of compounds of formula (I) or (II); and at least one of compounds represented of formula (III) or (IV), wherein weight ratio of total amount of the compounds of formula (I) or (II) to total amount of the compounds of formula (III) or (IV) is from 5:95 to 95:5: wherein R1 represents a C8-C20 straight-chain alkyl group; R2 represents a monovalent organic group; and number n of substituents R2 represents an integer of from 0 to 4; R3—SO3H??(II) wherein R3 represents a C8-C20 straight-chain alkyl group; wherein R4 represents a C8-C20 branched alkyl group; R5 represents a monovalent organic group; and number m of substituents R5 represents an integer of from 0 to 4; and R6—SO3H??(IV) wherein R6 represents a C8-C20 branched alkyl group.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: January 28, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yuki Sasaki, Satoshi Hiraoka, Fumiaki Mera, Hirotaka Matsuoka, Yasuo Matsumura
  • Patent number: 8618246
    Abstract: A manufacturing method of polyethylene terephthalate including a step of melt polycondensation in presence of polycondensation catalyst represented by general Formula (I), wherein R1 represents an alkyl group having from 2 to 12 carbon atoms, and melt polycondensed polyethylene terephthalate has an intrinsic viscosity of from 0.48 to 0.53 dL/g and a terminal carboxyl number of from 14 to 22 mmol/kg; and a step of solid phase polycondensation to obtain solid phase polycondensed polyethylene terephthalate having an intrinsic viscosity of from 0.70 to 0.86 dL/g, and a terminal carboxyl number of less than 15 mmol/kg, followed by a step of applying an aqueous solution of at least one salt selected from the group consisting of acetate, carbonate, and sulfate of sodium, potassium, or cesium to the solid phase polycondensed polyethylene terephthalate, and then drying the polyethylene terephthalate, wherein the final content of sodium, potassium or cesium atom in dried polyethylene terephthalate is from 2 to 25 ppm.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: December 31, 2013
    Assignee: Teijin Fibers Limited
    Inventor: Shinya Konuma
  • Patent number: 8597653
    Abstract: A conjugate of a modified randomly branched asymmetric polymer without a core and a member of a binding pair is described. The modified randomly branched asymmetric polymer can contain chain branches, terminal branches or both. The modified randomly branched asymmetric polymer can contain random asymmetric branches or random asymmetric junctions. The binding pair can be an antibody, antigen or a ligand.
    Type: Grant
    Filed: July 11, 2010
    Date of Patent: December 3, 2013
    Assignee: ANP Technologies, Inc.
    Inventors: Ray Yin, Dujie Qin, Jing Pan
  • Patent number: 8591904
    Abstract: A conjugate of a modified randomly branched asymmetric polymer without a core and a member of a binding pair is described. The modified randomly branched asymmetric polymer can contain chain branches, terminal branches or both. The modified randomly branched asymmetric polymer can contain random asymmetric branches or random asymmetric junctions. The binding pair can be an antibody, antigen or a ligand. The conjugate includes a drug.
    Type: Grant
    Filed: July 11, 2010
    Date of Patent: November 26, 2013
    Assignee: ANP Technologies, Inc.
    Inventors: Ray Yin, Dujie Qin, Jing Pan
  • Patent number: 8580872
    Abstract: A sulfopolyester containing residues of 2,2,4,4-tetralkylcyclobutane-1,3-diol such as 2,2,4,4-tetramethylcyclobutane-1,3-diol is highly dispersible in water. This allows one to reduce the content of sulfonate groups or reduce the amount of ethylene glycol or other hydrophilic glycols to retain good water resistance in cured coatings. The sulfopolyester may also be a reaction product of a 2,2,4,4-tetralkylcyclobutane-1,3-diol along with 1,4-cyclohexanedimethanol, neopentyl glycol, or a mixture thereof with an acid component. Coating compositions may also contain these sulfopolyesters along with water and a polymer resin.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: November 12, 2013
    Assignee: Eastman Chemical Company
    Inventors: Thauming Kuo, Phillip Bryan Hall
  • Patent number: 8580914
    Abstract: A process for producing an aliphatic polyester through ring-opening polymerization of a cyclic ester, wherein a partial polymer in a molten state is continuously introduced into a twin-screw stirring device to continuously obtain a partial polymer in a solid pulverized state, the partial polymer is subjected to solid-phase polymerization, and the resultant polymer is melt-kneaded together with a thermal stabilizer to be formed into pellets. As a result, an aliphatic polyester of a high molecular weight and with little discoloration is produced efficiently.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: November 12, 2013
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Yoshinori Suzuki, Tomohiro Hoshi, Fumio Maeda
  • Patent number: 8552081
    Abstract: The present invention is a high modulus bio-based polymer plastic composition or mixture and methods of preparing the same. The composition is formed from the reaction of a bio-based epoxidized triglyceride oil, an energy activated catalyst and a bio-based non-aromatic cross-linking compound to form a structural polymer plastic. The bio-based epoxidized triglyceride oil is selected from a bio-based epoxidized triglyceride or a bio-based acrylated epoxidized triglyceride. The non-aromatic cross-linking compound is selected from itaconic acid or itaconic anhydride, and the energy activated catalyst is activated by UV radiation or heat.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: October 8, 2013
    Assignee: South Dakota School of Mines and Technology
    Inventors: David A. Boyles, Mohammad S. Al-Omar