Patents Examined by Geoffrey S. Evan
  • Patent number: 12005528
    Abstract: A weaving control method in fillet welding. On a surface perpendicular to a welding direction, a position of the welding torch is set such that a weaving reference line passes through a base point on a weld line, and at least five fixed end points are set, and positions of the fixed end points are set such that one or more of the fixed end points are provided on each of both sides across the weaving reference line and a reference end point a being on the weaving reference line and having the shortest distance between a tip and a base metal is provided. The weaving operation is performed such that the welding torch moves between the fixed end points along with a trajectory forming a polygon when viewed from the welding direction.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 11, 2024
    Assignee: Kobe Steel, Ltd.
    Inventors: Baini Jo, Atsushi Fukunaga, Akira Ogawa
  • Patent number: 11992891
    Abstract: The disclosure provides a machining program generating device of a wire discharge machine, a machining program generating method, a wire discharge machining system and a machined object manufacturing method. The machining method of the wire discharge machine of the disclosure includes: a processing of forming and machining a claw part on at least one of a machining path of a machining groove and a machining path of a dividing line for dividing a core that forms an inner part of a workpiece separated by the machining groove; and a processing of separating the core from the workpiece by dividing at the dividing line.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: May 28, 2024
    Assignee: Sodick Co., Ltd.
    Inventors: Tsubasa Kuragaya, Masashi Sakaguchi
  • Patent number: 11986898
    Abstract: A process for joining first and second metal workpieces by laser brazing for forming a vehicle structure includes providing the workpieces in contacting relationship so as to form an elongated contact region, wherein at least one of the workpieces is made of hot-dip galvanized steel material, supplying a laser beam having a beam parameter product lower than 10 mm·mrad from a laser source, guiding the laser beam through a laser focus head having a total optical magnification in the range of 1:0.5-1:1.5, directing the laser beam along the elongated contact region, wherein a beam spot formed where the laser beam hits the contact region has a size in the range of 2-6 mm, and supplying a consumable wire of filler material to the beam spot to melt the consumable wire and braze the workpieces together, wherein the consumable wire comprises at least 95% copper.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 21, 2024
    Assignee: Ningbo Geely Automobile Research & Dev. Co., Ltd.
    Inventors: Niklas Malmberg, Kenneth Kajsjö, Robert Enbom
  • Patent number: 11980967
    Abstract: A series of laser pulse bundles or bursts are used for micromachining target structures. Each burst includes short laser pulses with temporal pulse widths that are less than approximately 1 nanosecond. A laser micromachining method includes generating a burst of laser pulses and adjusting an envelope of the burst of laser pulses for processing target locations. The method includes adjusting the burst envelope by selectively adjusting one or more first laser pulses within the burst to a first amplitude based on processing characteristics of a first feature at a target location, and selectively adjusting one or more second laser pulses within the burst to a second amplitude based on processing characteristics of a second feature at the target location. The method further includes directing the amplitude adjusted burst of laser pulses to the target location.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: May 14, 2024
    Assignee: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventor: Yunlong Sun
  • Patent number: 11975397
    Abstract: An electrode wire for electroerosion machining, the electrode wire including a metal core, made of one or more layers of metal or metal alloy. On the metal core there is a coating having an alloy different from that of the metal core, and containing more than 50% by weight of zinc. The coating includes delta-phase copper-zinc alloy.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: May 7, 2024
    Assignee: THERMOCOMPACT
    Inventors: Michel Ly, Gérald Sanchez
  • Patent number: 11969834
    Abstract: A welding or additive manufacturing power supply includes output circuitry configured to generate a welding waveform, a current sensor for measuring a welding current generated by the output circuitry, a voltage sensor for measuring an output voltage of the welding waveform, and a controller operatively connected to the output circuitry to control the welding waveform, and operatively connected to the current sensor and the voltage sensor to monitor the welding current and the output voltage. A portion of welding waveform includes a controlled change in current from a first level to a second level different from the first level. The controller is configured to determine a circuit inductance from the output voltage and the controlled change in current, and further determine a change in resistance of a consumable electrode in real time based on the circuit inductance.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: April 30, 2024
    Assignee: LINCOLN GLOBAL, INC.
    Inventors: Daniel P. Fleming, Judah B. Henry, Jonathon C. Kelm, Edward D. Hillen
  • Patent number: 11964341
    Abstract: A laser welding head with movable mirrors may be used to perform welding operations, for example, with wobble patterns and/or seam finding/tracking and following. The movable mirrors provide a wobbling movement of one or more beams within a relatively small field of view, for example, defined by a scan angle of 1-2°. The movable mirrors may be galvanometer mirrors that are controllable by a control system including a galvo controller. The laser welding head may also include a diffractive optical element to shape the beam or beams being moved. The control system may also be used to control the fiber laser, for example, in response to the position of the beams relative to the workpiece and/or a sensed condition in the welding head such as a thermal condition proximate one of the mirrors.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 23, 2024
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Yuri Grapov, Kris Pruyn, Felix Stukalin, Erik Hinrichsen
  • Patent number: 11951507
    Abstract: Provided is a mask manufacturing method which includes preparing a mask sheet and a frame, stretching the mask sheet, and fixing the stretched mask sheet to the frame, and forming cell openings in the mask sheet fixed to the frame.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: April 9, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hwi Kim, Jeongkuk Kim, Da-Hee Jeong, Seungyong Song, Areum Lee, Hye Yong Chu, Kyu Hwan Hwang
  • Patent number: 11955763
    Abstract: An apparatus may include a diode-pumped solid-state laser oscillator configured to output a pulsed laser beam, a modulator configured to modify an energy and a temporal profile of the pulsed laser beam, and an amplifier configured to amplify an energy of the pulse laser beam. A modified and amplified beam to laser peen a target part may have an energy of about 5 J to about 10 J, an average power (defined as energy (J)×frequency (Hz)) of from about 25 W to about 200 W, with a flattop beam uniformity of less than about 0.2. The diode-pumped solid-state oscillator may be configured to output a beam having both a single longitudinal mode and a single transverse mode, and to produce and output beams at a frequency of about 20 Hz.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: April 9, 2024
    Assignee: Sunrise International, Inc.
    Inventors: Jeff Dulaney, David W. Sokol, Mark E. O'Loughlin, Keith Glover, Gary May
  • Patent number: 11945045
    Abstract: A thermal processing apparatus and method in which a first laser source, for example, a CO2 emitting at 10.6 ?m is focused onto a silicon wafer as a line beam and a second laser source, for example, a GaAs laser bar emitting at 808 nm is focused onto the wafer as a larger beam surrounding the line beam. The two beams are scanned in synchronism in the direction of the narrow dimension of the line beam to create a narrow heating pulse from the line beam when activated by the larger beam. The energy of GaAs radiation is greater than the silicon bandgap energy and creates free carriers. The energy of the CO2 radiation is less than the silicon bandgap energy so silicon is otherwise transparent to it, but the long wavelength radiation is absorbed by the free carriers.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Haifan Liang, Mark Yam, Vijay Parihar, Abhilash J. Mayur, Aaron Muir Hunter, Bruce E. Adams, Joseph M. Ranish
  • Patent number: 11945159
    Abstract: A method of additively manufacturing a three-dimensional object may include allocating irradiation of respective ones of a plurality of sequential layers of construction material between a first region and a second region based at least in part on a first irradiation time and/or a second irradiation time. Irradiation of the first region is allocated to a first scanner and the first irradiation time is indicative of a time required for the first scanner to irradiate the first region with respect to at least one of the plurality of sequential layers of construction material. Irradiation of the second region is allocated to a second scanner and the second irradiation time is indicative of a time required for the second scanner to irradiate the second region with respect to at least one of the plurality of sequential layers of construction material. The first irradiation time and the second irradiation time may be at least approximately the same.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: April 2, 2024
    Assignee: Concept Laser GmbH
    Inventors: Frank Herzog, Florian Bechmann, Markus Lippert, Johanna Hoch, Alexey Tarasov, Fabian Zeulner
  • Patent number: 11938560
    Abstract: This disclosure describes various methods and apparatus for characterizing an additive manufacturing process. A method for characterizing the additive manufacturing process can include generating scans of an energy source across a build plane; measuring an amount of energy radiated from the build plane during each of the scans using an optical sensor; determining an area of the build plane traversed during the scans; determining a thermal energy density for the area of the build plane traversed by the scans based upon the amount of energy radiated and the area of the build plane traversed by the scans; mapping the thermal energy density to one or more location of the build plane; determining that the thermal energy density is characterized by a density outside a range of density values; and thereafter, adjusting subsequent scans of the energy source across or proximate the one or more locations of the build plane.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: March 26, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: R. Bruce Madigan, Lars Jacquemetton, Glenn Wikle, Mark J. Cola, Vivek R. Dave, Darren Beckett, Alberto M. Castro
  • Patent number: 11931962
    Abstract: Method for producing an object by means of additive manufacturing, wherein said method comprises the steps of: receiving, in a process chamber, a bath of material, wherein a surface level of said bath of material defines an object working area; solidifying, by a solidifying device, a selective layer-part of said material on said surface level; controlled oxidisation, of waste particles originating from said solidifying of said material, by controlling an oxygen level, such that oxidised waste particles are obtained and ignition of said waste particles is avoided. Apparatus for producing an object by means of additive manufacturing.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 19, 2024
    Assignee: ADDITIVE INDUSTRIES B.V.
    Inventors: Ronnie Herman Anna Hensen, Mark Herman Else Vaes, Rob Peter Albert Van Haendel
  • Patent number: 11931823
    Abstract: Device and method for laser welding around a circumference of a workpiece. A fixed, non-movable unitary optical reflector has a pair of optical reflecting surface portions on a first side surface and a second side surface, respectively, arranged at an obtuse angle relative to each other. A workpiece is fixed in an assembly having the reflector. During setup, the vertical distance is adjusted between the reflector and workpiece along an axis that is transverse to a longitudinal axis thereof without any adjustment of the reflecting surfaces. The first and second side surfaces define a curve that is transverse to the longitudinal axis. Once setup has been completed, a laser beam is directed so that it moves along the optical reflector to thereby produce a 360 degree circumferential weld around the workpiece. Another assembly is provided to change the laser beam direction multiple times to irradiate a circumference of a fixed workpiece from a fixed laser source.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 19, 2024
    Assignee: DUKANE IAS, LLC
    Inventors: Grzegorz Zdzislaw Bugaj, Alexander Savitski
  • Patent number: 11931835
    Abstract: Embodiments of systems and methods in pulsed arc welding. A robotic welding system, having a welding torch with a contact tip, is configured to perform the following method: (a) generate and output a series of a determined number of welding output pulses as a welding wire electrode is fed toward a workpiece; (b) stop generating welding output pulses while allowing the welding wire electrode to continue to be fed toward the workpiece in an attempt to electrically short to the workpiece; (c) attempt to confirm that the welding wire electrode has electrically shorted to the workpiece within a determined error time period; and (d) repeat steps (a) through (c) if electrical shorting of the welding wire electrode has been confirmed within the determined error time period, else, shut down the robotic welding system to avoid damaging the welding torch.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: March 19, 2024
    Assignee: LINCOLN GLOBAL, INC.
    Inventors: Judah B. Henry, Bruce J. Chantry
  • Patent number: 11931827
    Abstract: Provided are a laser cutting device and a laser cutting method. The laser cutting device comprises a beam expanding element provided with a plurality of lens sets, wherein optical axes of the plurality of lens sets are located in the same line and each lens set comprises at least one lens; the beam expanding element is configured to convert an incident beam into a first beam; and a spectroscopic element arranged on a light path of an emitted light of the beam expanding element, and wherein the spectroscopic element is configured to convert the first beam into multiple second beams that are annular and spaced apart from each other.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: March 19, 2024
    Assignee: HAN'S LASER TECHNOLOGY INDUSTRY GROUP CO., LTD.
    Inventors: Huanyin Xin, Zhongqian Li, Hong Chen, Jiangang Lu, Hongjiang Zhang, Jiangang Yin, Yunfeng Gao
  • Patent number: 11910493
    Abstract: The present disclosure generally relates to a system for heating a bulk medium includes two or more electrodes spaced apart from one another and coupled to the bulk medium; and a power control system coupled to the electrodes, the power control system configured to heat the bulk medium by shaping a density of the current along a current path between the electrodes, thereby, producing an effective resistance along the current path in the bulk medium that is greater than the resistance of the bulk medium to a DC current, in which the power control system shapes the density of the current within a depth of the bulk medium by tuning a skin-depth of the current, and in which the power control system shapes the density of the current in a direction across the current path by the power control system by tuning a proximity effect of the current.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: February 20, 2024
    Assignee: De-Ice Technologies, Inc.
    Inventors: Alexandru Bratianu-Badea, Ruben Toubiana, Christopher Buenrostro
  • Patent number: 11904407
    Abstract: A laser welding apparatus is equipped with a laser head that emits a laser beam and an airflow forming unit that forms sheet-shaped airflows, in which the airflows formed by the airflow forming unit traverse an optical path of the laser beam emitted from the laser head, the airflows traversing the optical path at multiple positions which are spaced from each other in a direction along the optical path in a same direction. The airflow forming unit has an opening between the airflows at the multiple positions, the opening penetrating in a direction in which the airflows traverse the optical path.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: February 20, 2024
    Assignee: FANUC CORPORATION
    Inventors: Yoshinori Murakami, Satoru Kawai
  • Patent number: 11904406
    Abstract: Laser processing head (20) of the present disclosure includes housing (30), transparent protector (40), and temperature sensor (70). Housing (30) includes an optical path of processing laser light (LB). Transparent protector (40) is detachably fixed to housing (30), passes processing laser light (LB), and suppresses dust of work material (W) entering into housing (30). Here, the dust is generated from the work material (W) irradiated with processing laser light (LB). Temperature sensor (70) detects the temperature of transparent protector (40).
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: February 20, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Naoya Kato, Takayuki Yamashita, Doukei Nagayasu, Kenji Hoshino, Hideaki Yamaguchi, Ryo Ishikawa, Shinya Domoto, Kiyotaka Eizumi
  • Patent number: 11904397
    Abstract: EDM assemblies mount on a machining surface and discharge rotating sub-electrodes against the surface. The sub-electrodes can also revolve about another shared axis while discharging. Rotation and revolution may be achieved with planetary gears fixed with the sub-electrodes and meshing with a stationary sun gear. Several sub-electrodes can be used in a single assembly. Downward movement of the sub-electrodes from a central shaft on the mount allows several inches of the surface to be machined. Assemblies are usable in a nuclear reactor during a maintenance period to machine a hole for a replacement manway cover underwater in the flooded reactor. The differing rotational movements and vertical movement can be independently controlled with separate motors in the assembly. Power and controls may be provided remotely through an underwater connection.
    Type: Grant
    Filed: February 6, 2022
    Date of Patent: February 20, 2024
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Jack T. Matsumoto, Mark D. Sumner, Christopher M. Welsh