Patents Examined by Glenn Caldarola
  • Patent number: 7982085
    Abstract: The present invention relates to an in-line method for generating comonomer from monomer, such as ethylene. The comonomer generated is directly transported, without isolation or storage, to a polyethylene polymerization reactor. The in-line method includes the steps of providing an in-line comonomer synthesis reactor and a downstream gas/liquid phase separator prior to the polymerization reactor; feeding ethylene monomer and a catalyst in a solvent and/or diluent to the comonomer synthesis reactor; reacting the ethylene monomer and the catalyst in solvent and/or diluent under reaction conditions to produce an effluent stream including ethylene monomer and comonomer; passing the effluent stream from the comonomer synthesis reactor to the downstream gas/liquid phase separator to separate a gas stream from a bottom stream, wherein the gas stream is a mixture of ethylene monomer and comonomer; and passing the gas stream to the polymerization reactor to provide the necessary comonomer input.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: July 19, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Timothy D. Shaffer, James R. Lattner, John F. Walzer
  • Patent number: 7981275
    Abstract: The present invention relates to the novel catalytic composition having a high specific activity in reactions involving hydroprocessing of light and intermediate petroleum fractions, and preferably in hydrodesulphurization and hydrodenitrogenation reactions. The inventive catalyst contains at least one element of a non-noble metal from group VIII, at least one element from group VIB and, optionally, a group one element of the VA group, which are deposited on a novel catalytic support comprising of an inorganic metal oxide from group IVB, consisting of an (1D) one-dimensional nanostructured material having nanofibers and/or nanotube morphology with high specific surface area of between 10 and 500 m2/g.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: July 19, 2011
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, José Escobar Aguilar, María Antonia Cortés Jacome, Maria de Lourdes Mosqueira Mondragon, Víctor Pérez Moreno, Carlos Angeles Chávez, Esteban López Salinas, Marcelo Lozada y Cassou
  • Patent number: 7981849
    Abstract: A reversible thermal thickening grease for microelectronic packages, in which the grease contains filler particles; at least one polymer; and a binder; in which the filler particles are dispersed within the binder, in which one or more segments of the at least one polymer may be attached to the filler particles prior to dispersion in the binder, and in which the polymer collapses at temperatures below a Theta temperature and swells at temperatures above a Theta temperature. During the operation of a microelectronic package, grease pump-out and air proliferation are minimized with use of the reversible thermal thickening grease, while grease fluidity is retained under repetitive thermal stresses.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: July 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Claudius Feger, Jeffrey D. Gelorme, Sushumna Iruvanti, Rajneesh Kumar, Ijeoma M. Nnebe
  • Patent number: 7977522
    Abstract: A process of producing olefins by a metathesis reaction in a practical low temperature range by improving the reactivity of the catalyst is provided. The process of producing olefins according to the present invention allows a metathesis reaction of olefins, which uses a catalyst containing metal elements such as tungsten, molybdenum, rhenium or the like, to proceed at an industrially sufficient reaction rate in a practical low temperature range, by using a compound containing at least one metal element selected from the metals of Group Ia (alkali metals), Group IIa (alkaline earth metals), Group IIb and Group IIIa as co-catalyst and allowing hydrogen gas to co-exist with the reaction raw material.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: July 12, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Toshihiro Takai, Takeshi Kubota
  • Patent number: 7977391
    Abstract: Process for the production of a condensed-phase product from one or more gas-phase reactants, by feeding one or more reactants into a reactor, in which reactor the one or more reactants react in the gas-phase in the presence of a solid catalyst having one or more catalyst components to produce at least one product which is in a condensed-phase under reaction conditions. The solid catalyst is present as a bed having two or more regions in which the contact time of the one or more gas-phase reactants with the one or more catalyst components is different.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 12, 2011
    Assignee: BP Exploration Operating Company Limited
    Inventor: Sander Gaemers
  • Patent number: 7977520
    Abstract: Process for telomerizing noncyclic olefins having at least two conjugated double bonds with at least one nucleophile using a catalyst containing a metal of group 8, 9 or 10 of the Periodic Table of the Elements, wherein the overall telomerization process has a process step of catalyst recycling, in which hydrogen is added via a hydrogen source to the mixture present in this process step.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: July 12, 2011
    Assignee: EVONIX OXENO GmbH
    Inventors: Cornelia Borgmann, Dirk Roettger, Dagmara Ortmann, Reiner Bukohl, Stephan Houbrechts, Franz Nierlich
  • Patent number: 7976695
    Abstract: Methods and apparatus are disclosed for possibly producing pipeline-ready heavy oil from substantially non-pumpable oil feeds. The methods and apparatus may be designed to produce such pipeline-ready heavy oils in the production field. Such methods and apparatus may involve thermal soaking of liquid hydrocarbonaceous inputs in thermal environments (2) to generate, though chemical reaction, an increased distillate amount as compared with conventional boiling technologies.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: July 12, 2011
    Assignee: University of Wyoming Research Corporation
    Inventor: Lee E. Brecher
  • Patent number: 7973000
    Abstract: A semi-solid lubricant composition for transmission elements which is excellent in lubricity, antiwear properties, and energy-saving performance, has high reliability, and is for use as a turbine oil, machine tool oil, metal working oil, plastic working oil, cutting oil, compressor oil, vacuum-pump oil, electrical-contact oil, grease, or machine oil; and a mechanical system provided with the composition. The composition, which reduces the wear of sliding parts of a transmission element, comprises: an amide compound having one or two amide groups and forming a three-dimensional network structure; and a liquid base oil ingredient having a dynamic viscosity at 100° C. of 25 mm2/s or lower and a viscosity index of 120 or higher. The composition contains substantially no ingredients other than the amide compound and liquid base oil ingredient. The mechanical system has a transmission element including sliding parts which are provided with the semi-solid lubricant composition for transmission elements.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: July 5, 2011
    Assignee: Japan Energy Corporation
    Inventors: Yuji Shitara, Koichi Yoshida
  • Patent number: 7972482
    Abstract: A method is disclosed for treating the effluent from a hydrocarbon pyrolysis unit without employing a primary fractionator. The method comprises passing the gaseous effluent to at least one primary heat exchanger, thereby cooling the gaseous effluent and generating high pressure steam, and then cooling the gaseous effluent to a temperature at which tar, formed by reactions among constituents of the effluent, condenses. The gaseous effluent and the condensed tar are fed to at least one knock-out drum, whereby the tar is separated from the gaseous effluent. The gaseous effluent is then further cooled to condense a pyrolysis gasoline fraction from the effluent and to reduce the temperature of the effluent to a point at which it can be compressed efficiently. The condensed pyrolysis gasoline fraction is separated from the effluent and then distilled so as to reduce its final boiling point.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: July 5, 2011
    Assignee: ExxonMobile Chemical Patents Inc.
    Inventors: Robert David Strack, John R. Messinger
  • Patent number: 7972560
    Abstract: An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Peter Werner Sutter, Eli Anguelova Sutter
  • Patent number: 7968505
    Abstract: A magnetic recording medium comprising a lubricant film comprising a photosynthesized lubricant having a single phase composition of at least a lubricant moiety and an additive moiety is disclosed.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 28, 2011
    Assignee: Seagate Technology LLC
    Inventors: Jianwei Liu, Michael Joseph Stirniman
  • Patent number: 7968502
    Abstract: The present invention relates to a lubricant for lubricating relatively movable, facing contact surfaces at least one of which is coated with DLC, a method of lubricating DLC contact surfaces with this lubricant, and a system having DLC contact surfaces. The lubricant fulfills the following conditions (a) and (b): (a) the lubricant contains a lubricant base oil containing, as a main component, a base oil composed at least one of a hydrocracked mineral oil, a wax-isomerized mineral oil, and a poly-?-olefin base oil. The base oil has a kinematic viscosity of 2 to 20 mm2/s at 100° C., a total aromatic content of not higher than 5 mass %, and a sulfur content of 0.005 mass %; and (b) the lubricant has a sulfur content of not higher than 0.2 mass %.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: June 28, 2011
    Assignees: Nippon Oil Corporation, Nissan Motor Co., Ltd.
    Inventors: Shozaburo Konishi, Makoto Kano, Takafumi Ueno, Takao Ishikawa
  • Patent number: 7964003
    Abstract: The method of adding to gasoline which has been stored in a container, of relatively small size for a substantial period of time to cause substantial loss of the more volatile gasoline components, an additive composition which comprises a flammable organic liquid having a Reid vapor pressure of 2 to 18 psig, to improve starting capacity of a motor fueled by said gasoline.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: June 21, 2011
    Assignee: Gold Eagle Co.
    Inventor: Robert Thomas Wicks
  • Patent number: 7964143
    Abstract: A nanotube device and a method of depositing nanotubes for device fabrication are disclosed. The method relates to electrophoretic deposition of nanotubes, and allows a control of the number of deposited nanotubes and positioning within a defined region.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: June 21, 2011
    Assignee: New Jersey Institute of Technology
    Inventors: Reginald Conway Farrow, Amit Goyal, Zafar Iqbal, Sheng Liu
  • Patent number: 7964540
    Abstract: A lube base oil which comprises at least one hydrocarbon compound having as the basic skeleton a structure represented by any of the general formulae (I) to (VI) and has a viscosity at ?40° C. of 40 Pa·s or lower and a viscosity index of 80 or higher, (wherein p is an integer of 1 to 10, provided that in the formulae (I) and (II), p is not 1). It satisfies the coefficient of high-temperature traction, low-temperature flowability, and viscosity index on a high level.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: June 21, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Yukio Yoshida, Toshiyuki Tsubouchi, Hiroki Sekiguchi, Hidetoshi Koga
  • Patent number: 7964093
    Abstract: Methods and apparatus relate to treating fluid to at least reduce selenium content within the fluid, which may be an aqueous liquid and form a feed stream. The treating removes selenium that may be present in compounds, such as selenocyanate, from the feed stream based on adsorption from contact of the fluid with a sorbent. Flowing a gaseous hydrogen sulfide and sulfur dioxide containing stream over a support, such as activated carbon, may provide the sorbent impregnated with sulfur and utilized in the treating of the fluid.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: June 21, 2011
    Assignee: ConocoPhillips Company
    Inventors: Mark A. Hughes, Roland Schmidt, Jon M. Nelson, Joseph B. Cross
  • Patent number: 7964092
    Abstract: Systems and methods for processing hydrocarbons are provided. A first mixture including one or more hydrocarbons and water can be separated to provide a first waste water and a second mixture. The second mixture can be apportioned into a first portion and a second portion. The first portion can be separated to provide a second waste water and a third mixture. At least a portion of the third mixture and hydrocarbon containing solids can be combusted to provide a combustion gas. A portion of the hydrocarbon containing solids can be gasified to provide regenerated solids and gasified hydrocarbons. A portion of the second portion can be vaporized and cracked in the presence of the combustion gas and gasified hydrocarbons to provide vaporized hydrocarbons and cracked hydrocarbons. Hydrocarbons can be deposited onto the regenerated solids to provide the hydrocarbon containing solids.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: June 21, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Rashid Iqbal
  • Patent number: 7964159
    Abstract: Described herein are novel devices for the study of transport characteristics of complex or simple fluids, interactions among molecules in suspension, interactions between molecules in suspension and wall-bound molecules, and biochemical sensing devices made of reservoirs for fluid containment linked by a nanotubes. Also disclosed are methods of delivering medicaments and monitoring fluidic interactions of molecules or analytes.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: June 21, 2011
    Assignees: The Trustees Of The University of Pennsylvania, Drexel University
    Inventors: Haim H. Bau, Byong Man Kim, Michael A. Riegelman, Yury Gogotsi
  • Patent number: 7964090
    Abstract: Systems and methods for processing hydrocarbons are provided. A hydrocarbon containing one or more asphaltenes and one or more non-asphaltenes can be mixed with a solvent. The ratio of the solvent to the hydrocarbon can be about 2:1 to about 10:1. The asphaltenes can be selectively separated from the non-asphaltenes. A portion of the asphaltenes can be vaporized in the presence of gasified hydrocarbons and combustion gas. A portion of the asphaltenes can be cracked at a temperature sufficient to provide a cracked gas. Liquid asphaltenes, solid asphaltenes, or both can be deposited onto one or more solids to provide one or more hydrocarbon containing solids. The cracked gas can be selectively separated from the hydrocarbon containing solids. A portion of the hydrocarbon containing solids can be combusted to provide the combustion gas. The hydrocarbon containing solids can be gasified to provide the gasified hydrocarbons and to regenerate the solids.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: June 21, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Rashid Iqbal
  • Patent number: 7964543
    Abstract: The present invention is directed to Mannich condensation product sequestering agents or mixtures of Mannich condensation product sequestering agents for use in fuels and lubricating oils. The present invention is also directed to a process for preparing the Mannich condensation product sequestering agents. The present invention is also directed to a product formed by combining, under reaction conditions, a polyisobutyl-substituted hydroxyaromatic compound, an aldehyde, an amino acid or ester thereof, and an alkali metal base to form the Mannich condensation product sequestering agent. The present invention is also directed to a lubricating oil composition, a lubricating oil concentrate, a fuel composition, and a fuel concentrate having the Mannich condensation product sequestering agents of the present invention.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: June 21, 2011
    Assignee: Chevron Oronite Company LLC
    Inventors: James J. Harrison, Kenneth D. Nelson