Patents Examined by Gregory Listvoyb
  • Patent number: 11111607
    Abstract: The present invention relates to a process for making high-strength polylactic acid elongated object comprising the steps of making a solution of polylactic acid in a solvent at a concentration of 5 to 50 mass %; spinning the solution through a spinplate comprising at least 1 spinhole to form a fluid elongated object; cooling the fluid elongated object with a cooling medium to form a solvent-containing gel elongated object; removing at least partly the solvent from the gel elongated object to form a solid elongated object; and drawing the elongated object while applying a draw ratio of at least 2, to form a high strength PLA elongated object, characterized in that the cooling medium has a temperature Tq of less than 0° C. The present invention also relates to gel-spun elongated objects comprising PLA with an IV in the range of 4-40 dl/g, and having a tenacity in N/tex such that Ten?0.146*IV, as well as gel-spun elongated object having a tenacity and a filament titer in tex (t) such that Ten?1.40*t ?0.3.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: September 7, 2021
    Assignee: DSM IP ASSETS B.V.
    Inventors: Harm Van Der Werff, Bengisu Corakci, Roman Stepanyan
  • Patent number: 11097571
    Abstract: A tire having a tire frame, the tire frame comprising a thermoplastic elastomer as a resin material, and the thermoplastic elastomer having a value of orientation f, as measured by a small angle X-ray scattering method, of from ?0.08 to 0.08.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 24, 2021
    Assignee: BRIDGESTONE CORPORATION
    Inventor: Hiromasa Yamashita
  • Patent number: 11091586
    Abstract: Described as one aspect of the invention are polyester compositions including at least one polyester which comprises: (a) a dicarboxylic acid component comprising about 90 to about 100 mole % of terephthalic acid residues; and (b) a glycol component comprising: (i) about 10 to about 27 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and (ii) about 73 to about 90 mole % ethylene glycol residues; wherein the total mole % of the dicarboxylic acid component is 100 mole %, and wherein the total mole % of the glycol component is 100 mole %; wherein the inherent viscosity of the polyester is from 0.50 to 0.8 dL/g; and wherein the L* color values for the polyester is 90 or greater. The polyesters may be manufactured into articles.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: August 17, 2021
    Assignee: Eastman Chemical Company
    Inventors: Emmett Dudley Crawford, James Thomas Goetz, Michael Keith Coggins, Douglas Weldon Carico, Jr.
  • Patent number: 11091590
    Abstract: The present invention relates to an amorphous or microcrystalline copolyamide (A) containing at least the following monomers: (a) at least one cycloaliphatic diamine; (b) 0.25 to 4.4 mol % of at least one dimeric fatty acid; and (c) 12 to 49.75 mol % of at least one aromatic dicarboxylic acid selected from the group consisting of isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid, and (d) 0 to 37.75 mol % of at least one aliphatic dicarboxylic acid; where the molar proportion of isophthalic acid is at least equal to the molar proportion of terephthalic acid, and where the monomers (b), (c) and optionally (d) add up to 50 mol % and the molar proportions of all the monomers present in the copolyamide (A) add up to 100 mol %. The invention further relates to moulding compounds comprising the copolyamide (A), to mouldings made therefrom and to the use thereof.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 17, 2021
    Assignee: EMS-Patent AG
    Inventors: Botho Hoffmann, Etienne Aepli, Thomas Wiedemann
  • Patent number: 11061287
    Abstract: A photo alignment including a copolymer of a diamine and a dianhydride, wherein the copolymer includes a repeating unit including a first group derived from the diamine and a second group derived from the dianhydride, and wherein any one of the first group and the second group includes a photoreactive group and the other one of the first group and the second group includes at least one selected from a tert-butyl group, a tert-butoxy group, a tert-butyloxycarbonyl group, and a di-tert-butyloxycarbonyl group.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: July 13, 2021
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jin-Soo Jung, Suk Hoon Kang, Baek Kyun Jeon
  • Patent number: 11046825
    Abstract: The present invention is directed toward transparent films prepared from soluble aromatic copolyamides with glass transition temperatures greater than 300 C. The copolyamides, which contain pendant carboxylic groups are solution cast into films using N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP), or other polar solvents. The films are thermally cured at temperatures near the copolymer glass transition temperature. After curing, the polymer films display transmittances >80% from 400 to 750 nm, have coefficients of thermal expansion of less than 20 ppm, and are solvent resistant. The films are useful as flexible substrates for microelectronic devices.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: June 29, 2021
    Inventors: Limin Sun, Frank W. Harris, Jiaokai Jing, Haci B. Erdem, John D. Harvey, Dong Zhang
  • Patent number: 11041048
    Abstract: Polyhemiaminal (PHA) and polyhexahydrotriazine (PHT) materials are modified by 1,4 conjugate addition chemical reactions to produce a variety of molecular architectures comprising pendant groups and bridging segments. The materials are formed by a method that includes heating a mixture comprising solvent(s), paraformaldehyde, aromatic amine groups, aliphatic amine Michael donors, and Michael acceptors, such as acrylates. The reaction mixtures may be used to prepare polymer pre-impregnated materials and composites containing PHT matrix resin.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 22, 2021
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 11034797
    Abstract: The present disclosure relates to a polyimide precursor composition comprising an amic acid ester oligomer of formula (I): wherein r, Rx, G, P and R are as defined in the specification. Also, a use of the polyimide precursor composition and a polyimide made from the polyimide precursor composition.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: June 15, 2021
    Assignee: ETERNAL MATERIALS CO., LTD.
    Inventors: Meng-Yen Chou, Chung-Jen Wu, Chang-Hong Ho, Shun-Jen Chiang, Po-Yu Huang, Chung-Kai Cheng
  • Patent number: 11028227
    Abstract: A poly(amide-imide) copolymer that is a reaction product of a substituted or unsubstituted linear aliphatic diamine including two terminals, a diamine represented by Chemical Formula 1, a dicarbonyl compound represented by Chemical Formula 2, and a tetracarboxylic acid dianhydride represented by Chemical Formula 3: wherein, in Chemical Formulae 1 to 3, A, R3, R10, R12, R13, X, n7 and n8 are the same as defined in the specification.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: June 8, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: A Ra Jo, Chanjae Ahn, Sungwon Choi, Won Suk Chang, Boreum Jeong
  • Patent number: 11021573
    Abstract: A polyimide-forming composition includes a particulate polyimide precursor composition having an average particle size of 0.1 to 100 micrometers wherein the polyimide precursor composition comprises a substituted or unsubstituted C4-40 bisanhydride, and a substituted or unsubstituted divalent C1-20 diamine; an aqueous carrier; and a surfactant. A method of manufacturing an article including a polyimide includes the steps of forming a preform comprising the polyimide-forming composition; and heating the preform at a temperature and for a period of time effective to imidize the polyimide precursor composition and form the polyimide. An article prepared by the method, and a layer or coating including a polyimide and a surfactant are also described.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: June 1, 2021
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventor: Viswanathan Kalyanaraman
  • Patent number: 11021563
    Abstract: An embodiment of the present disclosure relates to a method for producing an optical component resin having excellent dyeability, an optical component resin, a spectacle lens, and spectacles. A method for producing an optical component resin, including a step of polymerizing a polymerizable composition containing a polyisocyanate component and a polythiol component containing 40 mol % or more of a polythiol compound having two or more sulfide bonds in a molecular structure thereof, in which the content of a hydrolyzable chlorine compound contained in the polyisocyanate component is in a range of 10 ppm by mass or more and 100 ppm by mass or less in the polyisocyanate component, an optical component resin obtained by the producing method, an optical component formed of the optical component resin, a spectacle lens including a lens substrate formed of the optical component resin, and spectacles including the spectacle lens.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: June 1, 2021
    Assignee: HOYA LENS THAILAND LTD.
    Inventors: Masahisa Kousaka, Takeaki Iryo
  • Patent number: 11015022
    Abstract: The present disclosure relates to a polyamide comprising at least one repeating unit of formula I: —[OC—Ar—O—P(?O)(—Ar)—O—Ar—CO—NH—R—NH]— Formula (I) wherein, Ar is independently selected from the group consisting of aryl, arylene, heteroaryl and carbocyclic group; R represents a covalent bond or a divalent hydrocarbon-based group selected from the group consisting of saturated or unsaturated aliphatics, saturated or unsaturated cycloaliphatics, aromatics, arylaliphatics, and alkylaromatics.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: May 25, 2021
    Assignee: Performance Polyamides, SAS
    Inventors: Gururajan Padmanaban, Kaustav Chakraborty, Mayuri Shaiwale, Imani B. Jones, Keshav S. Gautam
  • Patent number: 11014997
    Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: May 25, 2021
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Qing Yang, Randall S. Muninger, Youlu Yu, Yongwoo Inn
  • Patent number: 11008423
    Abstract: The present invention discloses a modified bismaleimide resin and preparation method thereof; under conditions of N,N-dimethylformamide serving as a catalyst, biomass-based 2,5-furandicarboxylic acid and thionyl chloride are acylated to obtain 2,5-furan diformyl chloride, which is then dissolved in dichloromethane with a biomass-based eugenol; under tertiary amine conditions an esterification reaction takes place, and a fully biomass-based bis(4-allyl-2-methoxyphenyl)furan-2,5-dicarboxylic acid ester is thus obtained; same is used for preparing a modified bismaleimide resin.
    Type: Grant
    Filed: December 3, 2016
    Date of Patent: May 18, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Aijuan Gu, Jiatao Miao, Guozheng Liang, Li Yuan
  • Patent number: 11008421
    Abstract: The present invention is to provide a spherical polyamide fine particle having smooth sliding properties and causing a low degree of environmental pollution. The polyamide fine particle according to the present invention includes: a polyamide including a repetition of a structural unit having at least one alkylene group and at least one amide bond, each of the at least one alkylene group having from 1 to 5 carbon atoms, wherein the polyamide fine particle has a sphericity of 80 or greater.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: May 18, 2021
    Assignee: KUREHA CORPORATION
    Inventors: Kazuyuki Yamane, Daisuke Murano, Yingge Xiao
  • Patent number: 11008460
    Abstract: There is provided herein a flame retarded polyamide composition comprising: (a) at least one polyamide; (b) a hydroquinone bisdiphenyl phosphate ester of the general formula (I): wherein R1, R2, R3 and R4 each independently is aryl, or arylalkyl each independently containing up to about 30 carbon atoms, optionally interrupted with heteroatoms, X is a divalent hydroquinone group, containing up to about 20 carbon atoms, and n has an average value of from about 1.0 to about 2.0; and, (c) at least one brominated flame retardant and optionally, melamine polyphosphate.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: May 18, 2021
    Assignee: ICL-IP AMERICA INC.
    Inventors: Yaniv Hirschsohn, Shay Dichter, Eyal Eden, Sergei Levchik
  • Patent number: 10995180
    Abstract: A polyetherimide composition includes a polyetherimide and two or more of a residual metal content, a sulfate anion, a phosphate anion, a nitrite anion, a nitrate anion, or a combination including at least one of the foregoing, a residual solvent content, a phosphorus-containing stabilizer, and alkali metal halide, alkaline earth metal halide, alkali metal carbonate, or a combination including at least one of the foregoing, wherein each of the aforementioned components, when present, is included in the composition in a particular amount. The resulting polyetherimide composition exhibits two or more useful properties. The polyetherimide composition can optionally further be combined with a polymer different from the polyetherimide to provide a thermoplastic composition. Methods of making the polyetherimide composition and articles including the polyetherimide composition are also described.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: May 4, 2021
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Mark A. Sanner, Thomas Link Guggenheim, Roy Ray Odle
  • Patent number: 10994057
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: May 4, 2021
    Assignee: TEPHA, INC.
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Patent number: 10982047
    Abstract: The process for synthesizing a poly(amic acid) polymer or a polyimide polymer is improved by using a solvent system consisting essentially of: (A) a first component consisting essentially of at least one of a sulfoxide, e.g., DMSO, and an alkyl phosphate, e.g., triethyl phosphate, and (B) optionally, a second component consisting essentially of at least one aprotic glycol ether, e.g., dipropylene glycol dimethyl ether.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: April 20, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Eungkyu Kim, William J. Harris, Qi Jiang, Xin Jiang, Kaoru Ohba
  • Patent number: 10975218
    Abstract: The present disclosure relates to nanoporous micro-spherical polyimide aerogels and a method for preparing the same. The use of the method for preparing polyimide aerogels, according to an embodiment of the present disclosure, enables the preparation of the polyimide aerogels through a low-temperature process, and thus can save energy and time when compared with existing preparing methods, can reduce production costs, and can prepare spherical polyimide aerogels, which are micro-sized uniform particles, having excellent chemical stability, thermal insulation characteristics, and absorption-desorption characteristics while having nano-sized pores. The spherical polyimide aerogels can be applied to various fields, such as an insulator, a drug delivery medium, and a catalyst supporter, due to excellent physical properties thereof.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: April 13, 2021
    Assignee: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventor: Haksoo Han