Patents Examined by Gustavo Rosario Benitez
-
Patent number: 12218608Abstract: A method includes detecting a voltage signal of a three-level power converter, the voltage signal indicative of a capacitor voltage balancing in the three-level power converter, and dynamically adjusting an operating variable to adjust the voltage signal until the capacitor voltage balancing in the three-level power converter satisfies a criteria.Type: GrantFiled: March 3, 2022Date of Patent: February 4, 2025Assignee: HUAWEI DIGITAL POWER TECHNOLOGIES CO., LTD.Inventors: Liming Ye, Heping Dai, Ning Wang, Gang Ye
-
Patent number: 12212239Abstract: An example apparatus includes: a first and second capacitor; a first and second inductor; a first switch having a first and second terminal, the first terminal coupled to the first capacitor, and the second terminal coupled to the first and second inductor; a second switch having a third and fourth terminal, the third terminal coupled to the second terminal, the fourth terminal coupled to the second capacitor; a third switch having a fifth and sixth terminal, the fifth terminal coupled to the first terminal, the sixth terminal coupled to the second inductor; and a diode having a seventh and eighth terminal, the seventh terminal coupled to the sixth terminal, the eighth terminal coupled to the fourth terminal.Type: GrantFiled: January 28, 2022Date of Patent: January 28, 2025Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Hua Tang, Shanguang Xu, Zhaofu Zhou, Teng Feng, Ian Lloyd Bower
-
Patent number: 12206320Abstract: A DCR current sensing circuit used in a switching converter having a power switch and an inductor. The DCR current sensing circuit has a current sensing capacitor coupled in series with a current sensing resistor to form a RC circuit, a current mirror, a first and a second compensation circuits, wherein the RC circuit is coupled in parallel with the inductor. The current mirror generates a first mirror current signal and a second mirror current signal based on a voltage across the current sensing capacitor. The first compensation circuit receives the first mirror current signal and generates a first current sensing signal for meeting a first requirement of the switching converter. The second compensation circuit receives the second mirror current signal and generates a second current sensing signal for meeting a second requirement of the switching converter.Type: GrantFiled: March 4, 2022Date of Patent: January 21, 2025Assignee: Chengdu Monolithic Power Systems Co., Ltd.Inventors: Chun Shih Huang, Chia Chun Hsiao
-
Patent number: 12206339Abstract: A method for hybrid control of grid-connected inverter based on time sharing of a voltage source and a current source including at least one control process, each control process including N+M control cycles. N may be a number of control cycles of a grid-connected inverter operating in a voltage source mode, M may be a number of control cycles of the grid-connected inverter operating in a current source mode. The control cycles of the grid-connected inverter operating in a voltage source mode and a current source mode may switch by counting. Aiming at a problem of being difficult to realize stable operation under large fluctuations in SCR, the present disclosure realizes a time-sharing control of the voltage source mode and the current source mode through a control algorithm, hybrids features of both mode, improves the stability of the grid-connected inverter, and realizes a stable operation under large fluctuations in SCR.Type: GrantFiled: May 24, 2024Date of Patent: January 21, 2025Assignee: HEFEI UNIVERSITY OF TECHNOLOGYInventors: Xing Zhang, Feng Han, Xiangdui Zhan, Xinxin Fu, Jilei Wang
-
Patent number: 12205784Abstract: A triggered vacuum gap (TVG) device that has application as a closing switch for synchronized closing in distribution and transmission power systems. The TVG device controllably sustains a current arc in the device through initial current zeros created by power system transients and, thereby, prevents premature interruption of the closing operation. The TVG device includes main electrodes defining a vacuum gap therebetween and a triggering electrode providing a triggering gap between one main electrode and the triggering electrode. The TVG device also includes a triggering circuit having a high voltage impulse source that supplies a fast rising impulse voltage to the one main electrode and the triggering electrode for creation of a plasma to provide an initial breakdown of the triggering gap and a low voltage unidirectional current source that supplies current to the one main electrode and the triggering electrode once the first triggering gap breakdown has occurred.Type: GrantFiled: August 12, 2021Date of Patent: January 21, 2025Assignee: S&C Electric CompanyInventor: Goran Djogo
-
Patent number: 12176804Abstract: The present disclosure relates to a voltage converter and method for pulse frequency modulation-type operation during a start-up phase.Type: GrantFiled: January 5, 2022Date of Patent: December 24, 2024Assignee: STMicroelectronics (Rousset) SASInventors: Sebastien Ortet, Vincent Binet
-
Patent number: 12176821Abstract: A device may include an rectifier with one or more transistors that accepts a three-phas7 input and generates a DC bus output, a low-pass filter to provide a filtered DC bus voltage, a driver to drive the transistors based on a modulation index, and a controller to generate the modulation index. The controller may generate a nominal modulation index, generate an adjusted modulation index based on the nominal modulation index modified by a ratio of the filtered and measured DC bus voltages, and provide the modulation index to the PWM driver, where the modulation index is the nominal modulation index when a difference voltage associated with a difference between the filtered and measured DC bus voltages is below a voltage threshold, and where the modulation index is the adjusted modulation index when the difference voltage is above the voltage threshold.Type: GrantFiled: May 12, 2022Date of Patent: December 24, 2024Assignee: VERTIV CORPORATIONInventors: Matthew Elswick, Xian Chen, Kaiyu Wang
-
Patent number: 12149179Abstract: A power converter includes a full-bridge circuit, power converting circuit, transformer, and controller. The full-bridge circuit includes a series-connected unit made of first and second switches and a series-connected unit made of third and fourth switches and is connected to power transmitting terminals. The power converting circuit is connected to power receiving terminals. The transformer includes power transmitting coil and power receiving coil. The power transmitting coil is connected to full-bridge circuit. The power receiving coil is connected to power converting circuit. The controller turns on the first and second switches alternately and also the third and fourth switches alternately. A resistive load is connected to the power receiving terminals. The controller serves to determine a phase difference between the time when first switch is turned on and the time when third switch is turned on to decrease with a decrease in measured voltage developed at the power receiving terminals.Type: GrantFiled: March 31, 2022Date of Patent: November 19, 2024Assignee: DENSO CORPORATIONInventors: Seiji Iyasu, Syuji Kurauchi, Yuuichi Handa
-
Patent number: 12149163Abstract: Provided is a technology in which a control device of a converter performs gate cutoff for cutting off power supply to a load when one of a battery detection value obtained by a battery voltage sensor or a low-voltage-side detection value obtained by a low-voltage-side voltage sensor or both thereof are abnormal values. After the control device performs the gate cutoff, the control device determines whether or not a main body circuitry is abnormal based on the battery detection value and the low-voltage-side detection value. When the control device determines that the main body circuitry is not abnormal, the control device determines whether one of the battery voltage sensor or the low-voltage-side voltage sensor is abnormal based on the battery detection value, the low-voltage-side detection value, and a high-voltage-side detection value obtained by a high-voltage-side voltage sensor.Type: GrantFiled: April 8, 2022Date of Patent: November 19, 2024Assignee: Mitsubishi Electric CorporationInventors: Kado Nakagawa, Jino Yoon, Nobuhiro Kihara, Mai Nakada
-
Patent number: 12143018Abstract: Disclosed is a DC voltage converter, including a plurality of dividing modules positioned in parallel and synchronized in an interleaved manner, all the dividing modules being controlled by one and the same error signal sampled for each dividing period.Type: GrantFiled: March 18, 2020Date of Patent: November 12, 2024Assignee: VITESCO TECHNOLOGIES GMBHInventor: Philippe Boissiere
-
Patent number: 12143030Abstract: A method of converting an alternating current (AC) voltage to a direct current (DC) voltage by an AC-to-DC converter. The method includes producing an AC virtual waveform approximately synchronized to the AC voltage. The method further includes detecting a cessation of the AC voltage, continuing to produce the AC virtual waveform during the cessation of the AC voltage, and detecting a resumption of the AC voltage. Upon detecting the resumption of the AC voltage, the method includes applying the AC virtual waveform to a control loop implemented by the AC-to-DC converter for a period of time, and after the period of time, the method includes applying an output of a phase-locked loop to the control loop instead of the AC virtual waveform.Type: GrantFiled: March 23, 2022Date of Patent: November 12, 2024Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Jongwan Kim
-
Patent number: 12136892Abstract: In a power converter, each of a positive busbar and a negative busbar includes a first current path that has a first thermal resistance and is a current flow path between a power-source connection terminal and at least one terminal connection portion, and a second current path that has a second thermal resistance and is a current flow path between the power-source connection terminal and an element connection portion. The first thermal resistance of the first current path of at least one of the positive busbar and the negative busbar is lower than the second thermal resistance of the second current path of the at least one of the positive busbar and the negative busbar.Type: GrantFiled: October 22, 2021Date of Patent: November 5, 2024Assignee: DENSO CORPORATIONInventors: Tomohisa Sano, Yuu Yamahira
-
Patent number: 12136870Abstract: The present disclosure provides a buck converter for achieving a high output and reducing cost. The buck converter includes: a MOSFET, including a first side connected to an application end of an input voltage; a rectifying element, connected to a second side of the MOSFET by a first connection node; a coil, having a first terminal connected to the first connection node; and an output capacitor, connected to a second terminal of the coil. The MOSFET is a super-junction MOSFET.Type: GrantFiled: December 8, 2021Date of Patent: November 5, 2024Assignee: ROHM CO., LTD.Inventor: Akinobu Sawada
-
Patent number: 12132392Abstract: A power conversion device including a semiconductor switching element having a control electrode terminal and two main electrode terminals and configured to control a current flowing between the two main electrodes by a drive signal applied to the control electrode terminal; and a drive circuit configured to generate the drive signal in synchronization with an input signal and to turn on/off the semiconductor switching element by the drive signal. The drive circuit is configured to detect the current flowing between the two main electrode terminals of the semiconductor switching element at a timing at which the semiconductor switching element is turned off, and to adjust a drive capacity.Type: GrantFiled: May 27, 2021Date of Patent: October 29, 2024Assignee: FUJI ELECTRIC CO., LTD.Inventor: Akira Nakamori
-
Patent number: 12109959Abstract: A power supply device includes: a first system; a second system; an inter-system switch configured to be able to connect and disconnect between the first system and the second system; a determining unit configured to keep the inter-system switch in an ON state in a normal time, and turn off the inter-system switch and determine which system a ground fault has occurred in, if detecting a ground fault of the first system or the second system; and a suppression circuit configured to suppress an electric discharge of the second power supply and supply electric power for ground fault detection to the second system, and the determining unit determines whether any ground fault has occurred in the second system or not, based on the electric power which is supplied from the suppression circuit to the second system.Type: GrantFiled: September 28, 2021Date of Patent: October 8, 2024Assignee: DENSO TEN LimitedInventors: Takeshi Matsumoto, Daiki Hakushima, Keiichi Yonezaki
-
Patent number: 12107490Abstract: An electronic circuit is disclosed. The electronic circuit includes a switching circuit that includes a high side switch connected to a low side switch at a switch node, a controller arranged to generate a high side control signal and a low side control signal, a variable delay circuit arranged to receive the high side control signal and in response transmit a corresponding delayed high side control signal, and to receive the low side control signal and in response transmit a corresponding delayed low side control signal, a high side driver circuit arranged to transmit a high side drive signal to the high side switch in response to receiving the delayed high side control signal, and a low side driver circuit arranged to transmit a low side drive signal to the low side switch in response to receiving the delayed low side control signal.Type: GrantFiled: November 3, 2021Date of Patent: October 1, 2024Assignee: Empower Semiconductor, Inc.Inventors: Narendra Nath Gaddam, Trey Roessig, David Lidsky
-
Patent number: 12107488Abstract: An electrical converter has an alternating-voltage side with at least two alternating-voltage terminals and a direct-voltage side. At least two series connections connected in parallel and each forming a converter arm of the converter assigned to one of the alternating-voltage terminals. Circular currents can flow between the series connections. According to the method, a load value describing the thermal load of the converter is calculated based on: an active power current value that indicates the active power current component of a phase current flowing across one of the alternating-voltage terminals; a reactive power current value that indicates the reactive power current component of the phase current flowing across the alternating-voltage terminal; and a circular current value that indicates the magnitude of the circular current(s) flowing between the series connections. The converter is controlled while also taking into account this load value.Type: GrantFiled: June 6, 2019Date of Patent: October 1, 2024Assignee: Siemens Energy Global GmbH & Co. KGInventors: Maxime Delzenne, Guenter Ebner
-
Patent number: 12101030Abstract: A multi-level converter comprises one or more flying capacitors configured to operate at balanced voltages. The multi-level converter comprises a plurality of switching groups comprising pairs of switches operable to transfer energy to and from an inductor and the one or more flying capacitors for inverting an input voltage to an inverted output voltage. The multi-level converter comprises the inductor configured to operate according to an inductor frequency greater than a switching frequency used to control the plurality of switching groups.Type: GrantFiled: December 27, 2021Date of Patent: September 24, 2024Assignee: INFINEON TECHNOLOGIES AUSTRIA AGInventors: Eslam Abdelhamid, Juan Sanchez, Giuseppe Bernacchia
-
Patent number: 12101034Abstract: A power conversion device is equipped with at least one leg circuit containing two switching elements connected in series, respectively, a transformer having a primary winding and a secondary winding, a capacitor connected between the leg circuit and one end of the primary winding, a switch circuit, and a rectifier circuit. The switch circuit selectively connects one of a plurality of winding sections of the secondary winding that are different from each other to the rectifier circuit.Type: GrantFiled: February 14, 2020Date of Patent: September 24, 2024Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Akira Kato, Motohiko Fujimura, Kazuyuki Sakiyama, Takehiko Yamakawa, Taiki Nishimoto
-
Patent number: 12088185Abstract: In a voltage conversion circuit, a sampling signal and a triangular wave signal are synthesized into a first signal, and the first signal and a second signal are compared to output a pulse-width modulation (PWM) signal. A frequency of the PWM signal may be determined by a frequency of the triangular wave signal. Therefore, the frequency of the PWM signal is fixed using the frequency-fixed triangular wave signal. Turning on or switching off of a power transistor in a voltage conversion subcircuit is controlled according to the PWM signal to convert a received direct current input voltage into a direct current output voltage, thereby implementing a fixed operating frequency for the voltage conversion circuit.Type: GrantFiled: July 2, 2021Date of Patent: September 10, 2024Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Chen Huang, Qiang Xie, Liang Chen