Patents Examined by Gwendolyn Blackwell
  • Patent number: 8043707
    Abstract: A low-emissivity multilayer system highly resistant to heat treatment for transparent substrates, in particular for window panes comprises, starting from the substrate, at least a lower antireflection coating consisting of several partial layers and including a layer essentially consisting of ZnO which is adjacent with a silver-based functional layer, an essentially metallic blocking layer located on top of the silver-based layer, an upper antireflection coating consisting of several partial layers and a cover coating optionally consisting of several partial layers. The upper antireflection coating has: a partial layer of ZnO or a mixed oxide ZnMeOx that contains ZnO or a succession of layers of mixed oxides of the ZnO:Al/ZnMeOx type; a partial layer of Si3N4 or SixOyNz; and between these two partial layers, a separating layer with a thickness of 0.5 to 5 nm, consisting of a metal oxide or a mixed oxide with a cubic crystal lattice, which prevents direct contact between these two partial layers.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 25, 2011
    Assignee: Saint-Gobain Glass France
    Inventors: Heinz Schicht, Uwe Schmidt, Pierre-Alain Gillet
  • Patent number: 8043721
    Abstract: A method of applying a ceramic coating to a substrate comprises laminating one or more layers of a green ceramic tape to a rigid substrate using a tackifying resin to adhere the tape to the substrate. Upon firing, the tackifying resin ensures near zero shrinkage of the tape in the XY plane without usage of elevated pressures or temperatures during lamination of green tape to the substrate. The thermal degradation completion temperature of the tackifying resin is lower than that of the resin binder used in the green tape.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: October 25, 2011
    Assignee: Ferro Corporatiom
    Inventors: Chandrashekhar S. Khadilkar, Srinivasan Sridharan, Aziz S. Shaikh
  • Patent number: 8034457
    Abstract: A seal structure is provided for an energy storage device. The seal structure includes a sealing glass joining an ion-conducting first ceramic to an electrically insulating second ceramic. The sealing glass has a composition that includes about 48 weight percent silica, about 20 weight percent to about 25 weight percent boria, about 20 weight percent to about 24 weight percent alumina, and about 8 weight percent to about 12 weight percent sodium oxide based on the total weight of the sealing glass composition. A method for making the seal structure is provided. An article comprising the seal structure is also provided.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: October 11, 2011
    Inventors: Jian Wu, Dong-Sil Park, Craig Stringer, Sundeep Kumar
  • Patent number: 8025975
    Abstract: Pastes for use in producing sintered frit patterns (14) on glass sheets (12), such as the glass sheets used as covers for OLED (18) display devices (10), are provided. The pastes include glass particles, filler particles, and a vehicle. The sizes of the filler and/or glass particles are reduced compared to prior art pastes. Reductions in porosity and surface roughness of sintered frits produced using the pastes, as well as improvements in the available process window for producing OLED packages and the hermeticity and strength of those packages, are reported.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: September 27, 2011
    Assignee: Corning Incorporated
    Inventors: John W Botelho, Edward Arthur Cuellar, Michelle Nicole Haase Pastel, Lu Zhang
  • Patent number: 8003235
    Abstract: The invention relates to a coated glass pane with a low-e and/or solar control coating comprising at least one layer sequence which comprises at least the following transparent layers: a lower anti-reflection layer, an IR-reflecting layer, an upper anti-reflection layer. At least one of the anti-reflection layers comprises at least one compound layer containing a mixture of an (oxy)nitride of Si and/or Al and of ZnO. The inventive coated glass panes are preferably heat treatable, e.g. toughenable and/or bendable.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 23, 2011
    Assignees: Pilkington Group Limited, Pilkington Italia S.p.A.
    Inventors: Giovanni Gagliardi, Marco Ronci, David Alistair Wood, John Robert Siddle
  • Patent number: 8003194
    Abstract: The present invention relates to touch screen articles comprising an antiglare layer. The antiglare layer comprises aggregate inorganic oxide particles in a cured inorganic polymer matrix.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: August 23, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Paul J. Richter, Darran R. Cairns, Frank J. Bottari
  • Patent number: 8003189
    Abstract: A scanner window and method of making a scanner window are provided. The window may include three layers. The layers may be a ceramic layer such as sapphire, a glass backing, and an adhesive layer comprising a polymer sheet. The window may be formed by stacking the components together and applying heat and pressure to result in adhesion of the ceramic layer to the glass layer. Additional features of the window may include improved strength, clarity and shatter resistance.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: August 23, 2011
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Christopher D. Jones, Pierre A. Chaussade
  • Patent number: 8003219
    Abstract: The present invention provides a technology related to a conductive film which is high in transparency, conductivity, and adhesiveness to a base plate. The present invention also provides a coating liquid including metal materials reacting with a ligand represented by a particular Chemical Formula and including indium (In), tin (Sn), or both thereof.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 23, 2011
    Assignee: Central Japan Railway Company
    Inventors: Christopher Cordonier, Tetsuya Shichi, Takafumi Numata, Kenichi Katsumata, Akimasa Nakamura, Yasuhiro Katsumata, Teruo Komine, Kenichirou Amemiya, Makoto Yamashita, Akira Fujishima
  • Patent number: 7998572
    Abstract: A self-lubricating coating is disclosed. The coating includes a base material. The coating also includes a nanoparticle of a first material and a shell substantially surrounding the nanoparticle and including a second material different than the first material.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: August 16, 2011
    Assignee: Caterpillar Inc.
    Inventors: Andrew Neil McGilvray, Atanu Adhvaryu, Lucy Victoria Davies
  • Patent number: 7998558
    Abstract: A glass sheet assembly includes a glass sheet having an edge surface and a shaped fiber. The shaped fiber has a first surface bonded to the edge surface of the glass sheet and a convex second surface not bonded to the edge surface for receiving a load.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: August 16, 2011
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Anping Liu, Ji Wang, Liming Wang, Wei Xu, Naiyue Zhou
  • Patent number: 7993741
    Abstract: Methods and apparatus for useful for protecting a substrate bearing a coating are provided. A separator in accordance with an exemplary embodiment of the present invention comprises a film carrying a plurality of particles Each particle preferably has a covered area adhered to the film and an exposed area that is larger than the covered area.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: August 9, 2011
    Assignee: Cardinal CG Company
    Inventors: Klaus Hartig, Leah M. Miller, Gary L. Pfaff
  • Patent number: 7993753
    Abstract: The present invention provides a coating liquid including organic metal complexes represented by Chemical Formula 1. R1-R8 in Chemical Formula 1 is one of the followings (1)-(4): (1) a group represented by CnH2n+1 (aforementioned n is an integral number equal to or larger than 0); (2) a group represented by COOR9 (aforementioned R9 is a group represented by CmH2m+1, and aforementioned m is an integral number equal to or larger than 0); (3) a halogen atom; and (4) CN or NO2.
    Type: Grant
    Filed: December 25, 2006
    Date of Patent: August 9, 2011
    Assignee: Central Japan Railway Company
    Inventors: Christopher Cordonier, Tetsuya Shichi, Takafumi Numata, Kenichi Katsumata, Akimasa Nakamura, Yasuhiro Katsumata, Teruo Komine, Kenichirou Amemiya, Akira Fujishima
  • Patent number: 7993752
    Abstract: The photovoltaic structure comprises a thin film coating on a transparent substrate, the thin film comprising an effective amount of nanocrystalline silicon embedded in a matrix of amorphous and/or microcrystalline silicon. A transparent conducting oxide layer on a layer of non-conductive transparent oxide provides light-trapping capability as well as electrical conductivity where needed. A chemical vapor deposition (“CVD”) reactor provides improved gas distribution to the substrates being coated in the reactor. An improved sputtering process and an improved RF plasma-enhanced CVD manufacturing method both using high levels of hydrogen in the hydrogen-silane mixture and high electrical power levels for the plasma to increase the speed and to lower the cost of manufacturing.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: August 9, 2011
    Assignee: Nano PV Technologies, Inc.
    Inventor: Anna Selvan John Appadurai
  • Patent number: 7993724
    Abstract: Insulation for high temperature applications includes glass fibers having an average diameter of between about 2.7 to about 3.8 microns. In one possible embodiment the insulation includes a polyacrylic acid binder. Such insulation has about 98 weight percent glass fibers and about 2 weight percent binder.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: August 9, 2011
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Jacob Chacko, Robert P. Collier, Edward A. Martine
  • Patent number: 7989053
    Abstract: An electroconductive diffuse reflective film is made of an electroconductive metal, wherein the electroconductive diffuse reflective film has a porous structure in which crystal grains having an average grain diameter of 50 nm or more and 1,000 nm or less are separately arranged at intervals of 10 nm or more and 800 nm or less on average.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: August 2, 2011
    Assignee: Kobe Steel, Ltd.
    Inventor: Masao Mizuno
  • Patent number: 7985489
    Abstract: The invention relates to a layered system of a component that can be thermally stressed, comprising at least one for expanding the application scope of layered systems and in particular for improving their life cycle. Said layer has at least one first and at least one second material and a mixture profile (1) that varies at least almost continuously with the layer thickness, without forming a boundary layer between the first and second material.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: July 26, 2011
    Assignee: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V
    Inventors: Michael Vergöhl, Christoph Rickers, Frank Neumann, Christina Polenzky
  • Patent number: 7972689
    Abstract: An optical thin sheet is provided, which comprises a substrate with a light diffusion layer on at least one side of the substrate. The optical thin sheet has an optical property with respect to a haze of no less than 98% and is particularly suitable for use in flat displays.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 5, 2011
    Assignee: Eternal Chemical Co., Ltd.
    Inventors: Lung-Lin Hsu, Chia-Yi Lu, Yi-Chung Shih, Ming-Tso Chen, Yen-Fu Huang
  • Patent number: 7968218
    Abstract: A method for coating a tool or tool part, includes providing a base structure of the tool or the tool part at a temperature of 850° C. to 950° C. and applying at least one layer to the base structure. One or more layers of the at least one layer is formed of a metal carbonitride of composed of at least one of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium. The one or more layers of the at least one layer is deposited by a deposition of a gas containing methane, nitrogen and at least one metal compound. After beginning the applying, the temperature is increased by at least 40° C. to an increased temperature and the deposition is continued for a time at the increased temperature.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: June 28, 2011
    Assignee: Boehlerit GmbH & Co. K.G.
    Inventors: Reinhard Pitonak, Jose Garcia, Ronald Weissenbacher, Klaus Ruetz-Udier
  • Patent number: 7968201
    Abstract: A multi-layer thin film stack, particularly suitable as a component of a solar cell, is deposited on a transparent dielectric substrate. The multi-layer film stack comprises a transparent electrically conductive metal oxide layer deposited over the dielectric substrate, the conductive metal oxide layer having a refractive index less than 2.0, a light transmittance optimizing interlayer having a refractive index between 2.3 and 3.5, deposited over the electrically conductive metal oxide layer, and a silicon layer having a refractive index of at least 4.5 deposited over the light transmittance optimizing interlayer. The film stack can be deposited by any suitable method, but deposition of each of these layers by atmospheric chemical vapor deposition is preferred.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: June 28, 2011
    Assignees: Pilkington Group Limited, Pilkington North America, Inc.
    Inventors: Douglas M. Nelson, Gary Nichol, Srikanth Varanasi
  • Patent number: 7968217
    Abstract: An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: June 28, 2011
    Assignee: General Electric Company
    Inventors: Reza Sarrafi-Nour, Krishan Lal Luthra, Peter Joel Meschter, Curtis Alan Johnson