Patents Examined by Hanh Phan
  • Patent number: 11546061
    Abstract: An injection locked transmitter for an optical communication network includes a master seed laser source input substantially confined to a single longitudinal mode, an input data stream, and a laser injected modulator including at least one slave laser having a resonator frequency that is injection locked to a frequency of the single longitudinal mode of the master seed laser source. The laser injected modulator is configured to receive the master seed laser source input and the input data stream, and output a laser modulated data stream.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 3, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Junwen Zhang, Zhensheng Jia, Luis Alberto Campos, Haipeng Zhang, Mu Xu, Jing Wang, Curtis Dean Knittle, Chuang Zhou
  • Patent number: 11546062
    Abstract: An example device may include an optical configuration configured to transmit a transmitted optical beam and receive a received optical beam, an optical modem, and an optical amplifier. An example optical amplifier may include an optical gain medium and an optical bandpass filter. The transmitted optical beam may have a transmit wavelength selectable from a plurality of transmit wavelength, and may have a different wavelength from the received optical beam. In some examples, the optical configuration may include at least one dichroic element. Various other devices, systems, and methods are described.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: January 3, 2023
    Assignee: Meta Platforms, Inc.
    Inventors: Slaven Moro, Eric Douglas Miller, Stephen Philip Efthyvoulos, Chien-Chung Chen, Matthew Thomas Hunwardsen
  • Patent number: 11539436
    Abstract: A network infrastructure combining data over cable service interface specification (DOCSIS) cable modem management and 10 Gb passive optical network XGPON networking technology. The DOCSIS equipment controls restrict the XGPON to physical layer (layer 1) while the DOCSIS equipment operate at a data link layer and above.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 27, 2022
    Assignee: MaxLinear, Inc.
    Inventors: Gerfried Krampl, Barak Hermesh, Amos Klimker, Shaul Shulman, Franz-Josef Schaefer, Guy Ray
  • Patent number: 11531089
    Abstract: A LIDAR system for ranging an object using primary and secondary light reflected at the object, includes a laser, arranged to emit the primary light along a transmit beam towards a scanning element of the system, wherein at least a part of the transmit beam adjacent to the scanning element defines a center line, a detector, arranged to detect the secondary light along a receive beam, wherein the receive beam includes a first part aligned with the center line and a second part having an inclination with respect to the center line, wherein the second part of the receive beam is in-between the first part and the detector, and a segmented lens, positioned on the center line in-between the first part of the receive beam and the second part of the receive beam, wherein the receive lens segment is designed to focus the receive beam onto the detector.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: December 20, 2022
    Assignee: Blickfeld GMBH
    Inventors: Michael Schardt, Markus Rauscher
  • Patent number: 11525274
    Abstract: A system used to monitor and control a pool using a visual light communication system is disclosed.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: December 13, 2022
    Assignee: Elliptic Works, LLC
    Inventors: Sean Walsh, John Bouvier
  • Patent number: 11522335
    Abstract: A transmitting device, preferably containing at least two laser diodes and a scanning mirror, which is deflectable about its center (MP) and is arranged in a housing with a transparent cover element. The cover element is formed, at least in a coupling-out region, by a section of a monocentric hemispherical shell (HK) with a center of curvature (K) and is arranged to cover the scanning mirror in such a way that the center of curvature (K) of the hemispherical shell (HK) and the center (MP) of the scanning mirror coincide, and is formed in a coupling-in region by an optical block, comprising a toroidal entrance surface, in the special form of a cylindrical surface, at least one toroidal exit surface and at least two first mirror surfaces arranged between them, for deflecting and pre-collimating the laser beams.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: December 6, 2022
    Assignee: JENOPTIK OPTICAL SYSTEMS GMBH
    Inventors: Uwe Schaller, Christian Raabe
  • Patent number: 11520017
    Abstract: A lidar device for scanning a region to be scanned, using at least one beam, including at least one radiation source for generating the at least one beam, and at least two mirrors rotatable about an axis of rotation, in order to deflect beams reflected by an object, onto a detector oriented perpendicularly to the axis of rotation; the at least two mirrors having, in each instance, a reflectivity for a wavelength range and being connectable to each other at an angle, in a region of the axis of rotation. A method for scanning a region to be scanned, using a lidar device, is also described.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: December 6, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Mustafa Kamil, Nico Heussner
  • Patent number: 11522340
    Abstract: An apparatus includes an optical splitter configured to receive an optical signal and to split the input optical signal to provide a first and a second optical signal. The apparatus further includes an interferometer comprising a first arm and a second arm, with the first arm being configured to receive the first optical signal, and the second arm being configured to receive the second optical signal. Notably a portion of the first arm is exposed to a reference gas that attenuates light of a characteristic wavelength. The apparatus further includes an optical coupler configured to receive an output optical signal from the first arm, and an output optical signal from the second arm and to provide a third optical signal; and a photodetector configured to receive the third optical signal, and to provide a photocurrent. The photocurrent increases when the difference between the characteristic wavelength and the wavelength of the optical signals increases.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: December 6, 2022
    Assignee: Keysight Technologies, Inc.
    Inventor: Bernd Nebendahl
  • Patent number: 11506699
    Abstract: An EMC test system (1) and an EMC test method performed in the EMC test system (1) for testing a DUT (6), wherein the EMC test system (1) comprises an EMC test chamber (2), wherein the DUT (6) is positioned in the EMC test chamber (2), at least one measurement equipment (4) positioned in the EMC test chamber (2) and communication means (3) using LiFi for transmitting and receiving measurement data and/or control data by the measurement equipment (4).
    Type: Grant
    Filed: November 29, 2019
    Date of Patent: November 22, 2022
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventors: Erik Araojo, Anthony Magpantay
  • Patent number: 11493603
    Abstract: A LIDAR sensor for detecting an object in the surroundings and a method of the LIDAR sensor includes a light source emitting electromagnetic radiation, a micromechanical deflection mirror deflecting the emitted electromagnetic radiation by at least one angle into the surroundings, and a mirror, which includes an aperture situated on a main beam axis of the light source, deflecting onto an optical receiver received electromagnetic radiation that has been reflected from the object.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: November 8, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Reiner Schnitzer, Siegwart Bogatscher, Jan Sparbert
  • Patent number: 11496223
    Abstract: The present invention relates to a transmitter for transmitting data and for emitting electromagnetic radiation in the visible spectral range, wherein the transmitter comprises a) a radiation source for generating and emitting first electromagnetic radiation, b) a modulator being adapted to modulate the first electromagnetic radiation depending on the data to be transmitted generating modulated first electromagnetic radiation, and c) a frequency converter for converting at least a part of the modulated first electromagnetic radiation into modulated second electromagnetic radiation, said modulated second electromagnetic radiation being different from the modulated first electromagnetic radiation, wherein the frequency converter comprises a polymeric matrix material comprising at least one organic fluorescent colorant. Furthermore, the invention relates to an illumination device comprising such transmitter.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: November 8, 2022
    Inventors: Sebastian Valouch, Robert Send, Sorin Ivanovici, Hannah Stephanie Mangold, Martin Koenemann
  • Patent number: 11486974
    Abstract: A LIDAR apparatus for scanning a scan region with at least one beam is described. The LIDAR apparatus includes at least one beam source for generating the at least one beam; having a mirror for deflecting the at least one generated beam toward the scan region; and having a detector mirror for deflecting at least one beam, reflected at an object, onto a defined region of a detector, the mirror and the detector mirror being disposed on a rotor rotatably around a vertical rotation axis, and the detector mirror focusing the at least one reflected beam onto the detector. A method for operating a LIDAR apparatus is also described.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: November 1, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Remigius Has, Annemarie Holleczek, Matthias Baier
  • Patent number: 11483071
    Abstract: An optical wireless communication device for transmitting data comprises a transmitter comprising a light source, a controller configured to control operation of the light source to produce modulated light comprising an optical wireless communication signal representative of said data, at least one proximity determining component configured to determine a proximity of an object, and a processing resource configured to determine whether the determined proximity is within a threshold distance, wherein the controller is configured to control operation of the transmitter and/or of at least one other component of the optical wireless communication device in dependence on whether the determined proximity is within the threshold distance.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: October 25, 2022
    Assignee: PURELIFI LIMITED
    Inventors: Dobroslav Tsonev, Mostafa Afgani
  • Patent number: 11483069
    Abstract: An optical network component and method are herein described. The system and method include determining a first power of an optical modulator using a first photodetector and a second power of the transmitter using a second photodetector, determining a contrast ratio based on the first power and the second power, and determining a modulation loss based on the contrast ratio.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: October 25, 2022
    Assignee: Infinera Corporation
    Inventors: Amir Rashidinejad, Matthew Fisher
  • Patent number: 11483077
    Abstract: Disclosed is an undersea power routing device including a first coupling port, a high voltage converter a second coupling port. The first coupling port may be configured to be coupled to an electrical power conductor and fiber optical cables of an undersea branch cable. The high voltage converter may be coupled to the first coupling port and operable to connect to the electrical power conductor via the first coupling port. The high voltage converter may be further operable to convert a high voltage electrical power supplied by the electrical power conductor to an output voltage having a lower voltage electrical power than the high voltage electrical power. The second coupling port may be configured to couple the high voltage converter to an interconnect cable. The high voltage converter, when coupled to the interconnect cable, may be operable to distribute the lower voltage electrical power to the interconnect cable.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: October 25, 2022
    Assignee: SUBCOM, LLC
    Inventors: Lara Denise Garrett, Haifeng Li, Stanley C. Wisniewski, II, Thomas Marino, Jr.
  • Patent number: 11469817
    Abstract: The invention provides a protection method against failure of AI-based QoT prediction, comprising calculating a first number of frequency slots and a consumable margin for a working lightpath that meet the traffic demand according to a method for allocating an OSNR margin for a working lightpath; calculating a second number of frequency slots and a consumable margin for the protection lightpath that meet the traffic demand according to a method for allocating an OSNR margin for the protection lightpath; and evaluating utilization of spectrum resource based on the first number of frequency slots and the second number of frequency slots and evaluating reliability of lightpath based on the consumable margin for the working lightpath. The method of the invention is more stable in practical network applications.
    Type: Grant
    Filed: December 15, 2019
    Date of Patent: October 11, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Gangxiang Shen, Ningning Guo
  • Patent number: 11469824
    Abstract: Apparatus and method for digital signal constellation transformation are provided herein. In certain configurations, an integrated circuit includes an analog front-end that converts an analog signal vector representing an optical signal into a digital signal vector, and a digital signal processing circuit that processes the digital signal vector to recover data from the optical signal. The digital signal processing circuit generates signal data representing a signal constellation of the digital signal vector. The digital signal processing circuit includes an adaptive gain equalizer that compensates the signal data for distortion of the signal constellation arising from biasing errors of optical modulators used to transmit the optical signal.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: October 11, 2022
    Assignee: Marvell Asia Pte Ltd.
    Inventor: Shu Hao Fan
  • Patent number: 11469825
    Abstract: An injection locked transmitter for an optical communication network includes a master seed laser source input substantially confined to a single longitudinal mode, an input data stream, and a laser injected modulator including at least one slave laser having a resonator frequency that is injection locked to a frequency of the single longitudinal mode of the master seed laser source. The laser injected modulator is configured to receive the master seed laser source input and the input data stream, and output a laser modulated data stream.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: October 11, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Chuang Zhou, Zhensheng Jia, Luis Alberto Campos, Curtis Dean Knittle, Jing Wang
  • Patent number: 11469848
    Abstract: A multi-channel sensing system is disclosed. The multi-channel sensing system includes a multi-channel sensor connector that wavelength-divides an optical pulse output from a pulsed laser into a plurality of channels in a spectrum domain, transmits each of a plurality of optical sub-pulses generated from the wavelength division to a channel path allocated for each channel in multi-channel paths, multiplexes the plurality of optical sub-pulses passed through the multi-channel paths and outputs an optical signal including the multiplexed optical sub-pulses; and a multi-channel optical phase detector that receives the optical signal output from the multi-channel connector and a reference signal which is synchronized to the pulse laser, and detects a channel-specific electrical signal that corresponds to a timing error between each of the plurality of optical sub-pulses included in the optical signal and the reference signal. At lease one of sensors is connected to at least one of the multi-channel paths.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: October 11, 2022
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jungwon Kim, Chan-Gi Jeon, Yongjin Na, Dohyeon Kwon
  • Patent number: 11463168
    Abstract: A multi-aperture free-space optical communications receiver comprises a plurality of telescopes each having a clear objective aperture with a diameter between 50 mm and 250 mm and arranged for receiving light collectively from an optical communications light source. A coherent combiner unit is configured for coherently combining the collectively received light to produce a combined optical signal therewith. Each telescope is arranged in association with, respectively, a wavefront detector to determine a wavefront of said received light directed to it by the respective telescope, a steerable reflector unit including a deformable mirror controllable to deform according to said determined wavefront such that said received light is reflected by the deformable mirror with a modified wavefront, and an optical signal receiver comprising a single-mode optical fibre.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: October 4, 2022
    Assignee: BAE SYSTEMS plc
    Inventors: Stephen Derek Finch, Michael Stewart Griffith, Andrew James Williams