Patents Examined by Harry Liu
  • Patent number: 9052379
    Abstract: A reception system including a receiver coupled to a processing means, the receiver comprising a number N of antennas, each being able to pick up signals representative of incident waves and to deliver a pulse dependent on said signal, N being an integer. Said receiver includes: N delay lines respectively coupled to each of said N antennas, each delay line being able to delay the signal delivered by the antenna with which it is associated by its own time delay, a coupling means able to sum the N signals delivered by the N delay lines, so as to deliver an output signal comprising a series of N time-shifted pulses. The processing means includes a measurement means able to measure the signal delivered by the coupling means and to deliver as output a signal formed by measurement samples, representative of the N pulses delivered by the N antennas.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: June 9, 2015
    Assignee: Thales
    Inventors: Daniel Jahan, Cedric Cornu
  • Patent number: 9048544
    Abstract: The reflectarray includes a plurality of cells integrated in a PCB and externally illuminated by an input signal from a feeding source at a frequency fi, and an output signal is reflected, where each cell of the reflectarray is an AIA formed by a passive radiating element connected to an active circuit, which can be either an oscillator, or a push-push oscillator or a SOM, where the passive radiating circuit is placed on a reflective surface forming a side of the reflectarray and the active circuit is placed on the reverse side, the active circuit producing an output signal with a frequency related to the input frequency fi and the oscillation frequency fosc of said active circuit. This phase relationship is determined by an output phase variation, which is controlled by electronic means integrated in the reflectarray system, which allows an output phase variation interval even higher than 180°.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: June 2, 2015
    Assignee: FUNDACIO CENTRE TECHNOLOGIC DE TELECOMUNICACIONS DE CATALUNYA
    Inventors: Apostolos Georgiadis, Ana Collado Garrido
  • Patent number: 9044171
    Abstract: Biometric monitoring devices, including various technologies that may be implemented in such devices, are discussed herein. Additionally, techniques, systems, and apparatuses are discussed herein for providing power-conserving techniques and systems for efficiently utilizing a GPS receiver are described. The positional fix frequency of the GPS receiver may, according to some implementations, be modified or adjusted between various levels according to data from one or more non-GPS sensors. Such non-GPS sensors may include, for example, ambient light intensity or spectrum sensors, accelerometers, gyroscopes, magnetometers, heart rate sensors, galvanic skin response sensors, infrared sensors, etc.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: June 2, 2015
    Assignee: FITBIT, INC.
    Inventors: Subramaniam Venkatraman, Heiko Gernot Albert Panther, Shelten Gee Jao Yuen
  • Patent number: 9041604
    Abstract: Multi-pattern transmission of frames. The method of operations comprises transmitting a first portion of a frame using a first radiation pattern. The frame comprises one or more preambles and a single data portion associated with the one or more preambles. Thereafter, an operation is conducted to switch the radiation pattern from the first radiation pattern, used to produce the first portion of the frame, to a second radiation pattern. A second portion of the same frame is produced using the second radiation pattern.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: May 26, 2015
    Assignee: ARUBA NETWORKS, INC.
    Inventor: Subburajan Ponnuswamy
  • Patent number: 9041603
    Abstract: A lens-based switched beam antenna system including a beam-forming lens, and a beam port router coupled to the beam-forming lens, including a plurality of beam ports, and configured to transmit beams via corresponding ones of the beam ports, wherein a first group of the beam ports corresponds to a first signal, and wherein a second group of the beam ports corresponds to a second signal.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 26, 2015
    Assignee: RAYTHEON COMPANY
    Inventors: Joel C. Roper, Kevin W. Ommodt, James D. Hill
  • Patent number: 9041601
    Abstract: Enhancing search capacity of Global Navigation Satellite System (GNSS) receivers. A method for searching satellite signals in a receiver includes performing a plurality of searches sequentially. The method also includes storing a result from each search of the plurality of searches in a consecutive section of a memory. Further, the method includes detecting free sections in the memory. The method also includes concatenating the free sections in the memory to yield a concatenated free section. Moreover, the method includes allocating the concatenated free section for performing an additional search.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: May 26, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jasbir Singh, Jawaharlal Tangudu, Aravind Ganesan
  • Patent number: 9035827
    Abstract: A method and apparatus for assisting the calculation of the position of a receiver device (1200), by observing a transmitted signal having a known structure. The method comprises: comparing (S220) the time of arrival, at a reference position (X1), of a first portion of the signal with the time of arrival at the receiver, at an unknown position (Y1), of a second portion of the signal; obtaining (S230) a local wave propagation model of the signal, the model comprising an estimate of the direction of propagation of the signal in the neighborhood of the reference position and unknown position; and using (S240) the direction of propagation and the result of the comparison to assist in the calculation of the unknown position relative to the reference position.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: May 19, 2015
    Assignee: U-BLOX A.G.
    Inventor: Christopher Brian Marshall
  • Patent number: 9035825
    Abstract: Assisted-GPS for a portable biometric monitoring device is provided. The portable biometric monitoring device may obtain updated ephemeris data from an associated secondary device via a short-range, low-power communication protocol. The secondary device may be a computing device such as a smartphone, tablet, or laptop. Various rules may control when the ephemeris data is updated. The ephemeris data may be used in the calculation of the global position of the portable biometric monitoring device. Additionally, the portable biometric monitoring device may communicate downloaded position fixing data to the associated secondary device. The associated secondary device may then calculate the global position from the position fixing data.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: May 19, 2015
    Assignee: Fitbit, Inc.
    Inventors: James Park, Heiko Gernot Albert Panther, Shelten Gee Jao Yuen
  • Patent number: 9035829
    Abstract: Devices, systems, and methods for sending positional information from transmitters/beacons are disclosed. In one implementation a transmitter generates a range block including a ranging signal and a hybrid block including positioning data, and sends the range block and hybrid block in predefined slots in a transmit frame. A receiver in a user device receives signals from a plurality of transmitters and generates position/location information using trilateration and measured altitude information in comparison with transmitter altitude information.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 19, 2015
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Andrew Sendonaris, Norman F. Krasner
  • Patent number: 9030356
    Abstract: Embodiments of the disclosure provide a cross coupled position engine architecture for sensor integration in a Global Navigation Satellite System. In one embodiment, a data processing engine for processing inertial sensor data within a positioning system receiver is disclosed. The data processing engine includes a first input for receiving the sensor data, and a second input for receiving a positioning data. The data processing system also includes a memory and a processor. The processor of the data processing system is coupled to the memory and to the first and second input. The processor of the data processing system is configured to calculate a net acceleration profile data from the inertial sensor data and from the positioning data. The net acceleration profile data calculated by the processor of the data processing system is used for the Global Positioning System (GPS) receiver to subsequently calculate a position and a velocity data.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 12, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Goutam Dutta, Tarkesh Pande, Sandeep Rao, Deric W. Waters
  • Patent number: 9030355
    Abstract: An apparatus for determining a location of a receiver by using signals received by the receiver from a number of satellites, the apparatus being configured to, when the receiver has been unable to decode a time-of-transmission from the satellite signals, determine a location for the receiver by use of an algorithm that takes an estimate of the location of the receiver as an input, and, when an estimate of the location of the receiver is unavailable, determine an approximate location of the receiver in dependence on the satellite signals and input that approximate location into the algorithm as the estimate of the location of the receiver.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: May 12, 2015
    Assignee: Cambridge Silicon Radio Limited
    Inventors: Murray Robert Jarvis, James Burgess Tidd, Anthony Richard Pratt
  • Patent number: 9030354
    Abstract: A method and structure for a phased-array system. An orthogonal signal generator generates a plurality of signals C(i) that are orthogonal or near-orthogonal, meaning that a cross correlation between any two signals C(i) is lower than autocorrelation, and there is a plurality of phased-array antenna elements, each said antenna element providing a signal Sinp(i). A multiplier multiplies each signal C(i) with the signal Sinp(i) of a corresponding one of the plurality of phased array antenna elements.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Arun Natarajan, Scott Reynolds
  • Patent number: 9024818
    Abstract: Communication systems and methods are disclosed. A number of interference sources are obtained based on received signals. A communication is performed using a plurality of antennas and a transmission directivity of the antennas is controlled when transmitting signals. At least null-steering from among null-steering and beam-forming is performed in relation to the transmission directivity of the antennas, when the number of interference sources is less than a first threshold value. Only the beam-forming is performed from among the null-steering and the beam-forming in relation to the transmission directivity of the antennas, when the number of interference sources is greater than the first threshold value.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 5, 2015
    Assignee: Kyocera Corporation
    Inventor: Tetsuo Okamoto
  • Patent number: 9019156
    Abstract: A positioning apparatus, positioning method and storage medium are described. According to one implementation, a positioning apparatus includes a first positioning section, a second positioning section, a first calculating section, a control section and a specifying section. The first positioning section performs positioning of the positioning apparatus. The second positioning section performs positioning of displacement of the positioning apparatus. The first calculating section calculates a positioning accuracy of displacement. The control section controls measurement operation of the first and the second positioning sections based on the positioning accuracy calculated by the first calculating section. The specifying section specifies a present position of the positioning apparatus based on a measured result of the first and second positioning sections.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 28, 2015
    Assignee: Casio Computer Co., Ltd.
    Inventor: Kouhei Watanabe
  • Patent number: 9019155
    Abstract: A global positioning system (GPS) and Doppler augmentation (GDAUG) end receiver (GDER) can include a GDAUG module. The GDAUG module can generate a GDER position using a time of flight (TOF) of a transponded GPS signal and a Doppler shift in a GDAUG satellite (GSAT) signal. The transponded GPS signal sent from a GSAT to the GDER can include a frequency shifted copy of a GPS signal from a GPS satellite to the GSAT. The GSAT signal can include a signal generated by the GSAT to the GDER.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 28, 2015
    Assignee: Raytheon Company
    Inventors: Ian S. Robinson, Mark Skidmore
  • Patent number: 9013351
    Abstract: Assisted-GPS for a portable biometric monitoring device is provided. The portable biometric monitoring device may obtain updated ephemeris data from an associated secondary device via a short-range, low-power communication protocol. The secondary device may be a computing device such as a smartphone, tablet, or laptop. Various rules may control when the ephemeris data is updated. The ephemeris data may be used in the calculation of the global position of the portable biometric monitoring device. Additionally, the portable biometric monitoring device may communicate downloaded position fixing data to the associated secondary device. The associated secondary device may then calculate the global position from the position fixing data.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: April 21, 2015
    Assignee: Fitbit, Inc.
    Inventors: James Park, Heiko Gernot Albert Panther, Shelten Gee Jao Yuen
  • Patent number: 9013350
    Abstract: In one embodiment, an area in which a mobile device may be located is determined using a satellite-based positioning system (SPS). An area in which the mobile device may be located is determined using a wireless local area network based positioning system (WLAN-PS). The area determined using the SPS is compared to the area determined using the WLAN-PS. In response to the area determined using the SPS being remote from the area determined using the WLAN-PS, it is concluded that the one or more WLAN APs have been moved to be about the area determined using the SPS. One or more locations of the one or more WLAN APs are updated in the reference database.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: April 21, 2015
    Assignee: Skyhook Wireless, Inc.
    Inventor: Farshid Alizadeh-Shabdiz
  • Patent number: 9013353
    Abstract: Systems and methods for correcting a location of a terminal are provided. In various aspects, a processor in a position correction apparatus may associate a reference position with the terminal, and determine a range for the terminal based on the reference position. The processor may also associate a second position with the terminal, and determine if the second position associated with the terminal is outside the determined range for the terminal based on the reference position. Upon a determination that indicates that the second position is outside the determined range, the processor may correct the second position to a corrected position associated with the terminal.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: April 21, 2015
    Assignee: Sony Corporation
    Inventors: Masanori Katsu, Masatomo Kurata, Takashi Ogata, Yasutaka Fukumoto, Tomoharu Ohsumi
  • Patent number: 9007262
    Abstract: The described invention allows for rapid geolocation of one or more RF emitters using a single moving collection platform. Inaccuracies of conventional frequency of arrival (FOA) geolocation methods are overcome by solving simultaneously for emitter location and a potential emitter drift associated with an observed emitter frequency. Certain embodiments may utilize particle filtering algorithms to recursively update multimodal state densities that are typical of solutions involving both unknown emitter location and nonstationary emitter carrier drift. Moreover, certain properties of particle filters may be exploited to provide a geolocation solution given a complex multimodal state space composed of emitter location and a non-stationary emitter frequency required for FOA.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 14, 2015
    Assignee: Leidos, Inc.
    Inventor: Hanna E. Witzgall
  • Patent number: 9000982
    Abstract: Aspects of the disclosure provide an antenna array system. The antenna array system includes a plurality of antenna elements and phase-shift switching circuitry. The plurality of antenna elements are organized in an array and configured to form a non-planar shaped antenna array surface. Each of the plurality of antenna elements is switchable to one of a plurality of phase shift states. The phase-shift switching circuitry is configured to switch each of the plurality of antenna elements to one of the plurality of phase shift states based on phase control signals. In an example, the phase-shift switching circuitry switches a first set of antenna elements to a first phase shift state and switches at least a second set of antenna elements to a second phase shift state to steer an antenna beam in a direction.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 7, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Frank Chethik, Richard D. Breen, Jr.