Patents Examined by Helen Kwok
  • Patent number: 7383729
    Abstract: A micro-electromechanical (MEM) device includes a proof mass resiliently mounted to a substrate. The proof mass has first and second combs formed on opposite sides thereof and is electrically coupled to ground. A fixed drive comb is interleaved with the first comb of the proof mass. A fixed pick-off comb is interleaved with a portion of the second comb of the proof mass. A fixed bias comb is interleaved with the second proof mass comb. A substantially direct current (DC) bias is applied to the fixed bias comb. A substantially constant voltage is also exerted on a sense plate beneath the proof mass. The sense plate and bias comb are coupled to a charge amp through capacitors such that transient currents induced by motion of the proof mass will cause current to flow to a charge amp.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: June 10, 2008
    Assignee: Honeywell International, Inc.
    Inventor: Mark W. Weber
  • Patent number: 7377165
    Abstract: A balancing station for positioning and holding a vehicle wheel for the attachment of a balance weight has a clamping device which has at least two mutually opposing jaws designed for pressing against the wheel periphery, the jaws being rotatably mounted around a common clamping axis. At least one jaw is rotatable and movable to and fro in the direction of the clamping axis via a drive. Via a conveyor device the vehicle wheel can be conveyed prone between the jaws of the clamping device. The clamping device can be moved into a tilted position wherein the clamping axis is inclined at an angle of at least 30 degrees from the horizontal out of a basic position wherein the clamping axis of the jaws is aligned substantially horizontally. In this way, weights can be applied particularly ergonomically to the inner face of the wheel.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: May 27, 2008
    Assignee: Schenck RoTek GmbH
    Inventors: Martin Rogalla, Dieter Thelen
  • Patent number: 7377170
    Abstract: The present invention presents a novel application of a wavelet-based multiscale method in a nanomachining process chemical mechanical planarization (CMP) of wafer fabrication. The invention involves identification of delamination defects of low-k dielectric layers by analyzing the nonstationary acoustic emission (AE) signal collected during copper damascene (Cu-low k) CMP processes. An offline strategy and a moving window-based strategy for online implementation of the wavelet monitoring approach are developed.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 27, 2008
    Assignee: University of South Florida
    Inventors: Rajesh Ganesan, Tapas K. Das, Arun K. Sikder, Ashok Kumar
  • Patent number: 7373822
    Abstract: A method for evaluating, during a welding process, a welded joint as it is forming between at least two parts of a joint using at least one ultrasonic transmitter sound penetrating the region of the forming welded joint with ultrasonic waves and at least one ultrasonic receiver, which registers the changes in sound transmittance of the ultrasonic waves penetrating the region of the forming welded joint in order to evaluate the welded joint. Sound is transmitted with longitudinal (l) and transverse (t) ultrasonic waves into the region of the welded joint, the time-dependent changes in sound transmittance Dl(t), Dt(t) of the longitudinal ultrasonic waves (l) and the transverse ultrasonic waves (t) being registered separately, and using the ratio of Dl(t) to Dt(t), the time point ts at which a molten mass forms in the region of the welded joint being determined and serving as a basis for evaluating the welded joint.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: May 20, 2008
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Brigitte Waschkies, legal representative, Eckhard Waschkies, incapacitated
  • Patent number: 7370533
    Abstract: A portable audiometer for performing hearing testing enclosed within a patient response mechanism housing is disclosed. The audiometer may include a printed circuit board containing circuitry, plugs or other connectors for wired or wireless headphones and bone conductor, a battery charging unit, and one or more buttons for indicating response to pure tone and other stimuli, including, but not limited to noise, speech, and visual and audio instructions and graphical representations of objects or concepts used in a comprehensive hearing test. The instrument can be connected via a wired or wireless interface to a variety of controlling devices, including PC's, Personal Digital Assistants (PDA's), cellular phones, smartphones, including hybrid phone and PDA, and other devices such as media players, gaming systems, personal audio players, and other devices that can operatively communicate with the portable device.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: May 13, 2008
    Assignee: Otovation, LLC
    Inventor: David M. Davis
  • Patent number: 7372616
    Abstract: Various embodiments of the invention are directed to various microdevices including sensors, actuators, valves, scanning mirrors, accelerometers, switches, and the like. In some embodiments the devices are formed via electrochemical fabrication (EFAB™).
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: May 13, 2008
    Assignee: Microfabrica, Inc.
    Inventors: Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, John D. Evans
  • Patent number: 7363815
    Abstract: An angular velocity sensor is provided with an oscillator including a pair of drive arms, a base portion coupled to one end of each drive arm, and a flexible arm extending from the base portion in a direction opposite from the drive arms. This angular velocity sensor is also provided with a driving member which oscillates the pair of drive arms in an approaching or separating direction, and a distortion detecting member which detects a distortion of the flexible arm in the oscillating direction of the drive arms.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: April 29, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Satoshi Ohuchi, Toshiyuki Nozoe, Hiroyuki Aizawa
  • Patent number: 7360424
    Abstract: A capacitance type liquid sensor is disclosed which detects a tilt angle and acceleration of an object using the fact that a liquid surface always keeps itself horizontal. Openings (13, 14) are formed in two sides of a hollow cylindrical closed container (6) made of an electrically insulating material, and the container has two parallel sides (2, 3). Plate-shaped main electrodes (4, 5) on at least one face of each of which silicon oxide film is formed are made to be in contact with the sides so as to close the openings, with the silicon oxide film being placed so as to face the inside of the container. A sealing agent (28) is interposed in a gap between the plate-shaped main electrodes and the sides. The container is filled with electrically conductive liquid (27) of an amount equal to substantially one-half of the inside volume of the container. An auxiliary electrode (8) brought into electrical contact with the conductive liquid is mounted in the container.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: April 22, 2008
    Assignee: Ubukata Industries, Co., Ltd.
    Inventors: Mitsuhiro Urano, Takashi Toda, Eisaku Yokota
  • Patent number: 7360425
    Abstract: A method for constructing a compensated composite structure, including a support tube coupled to a flexure plate and enclosing a capacitor plate, includes selecting a material for the support tube whereby the coefficient of expansion is larger than that of the material of the capacitor plates. Further, the method includes selecting the lengths of the support tube and the capacitor plate such that the composite structure is insensitive to changes in temperature.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: April 22, 2008
    Assignee: The Boeing Company
    Inventors: Ray F. Campbell, Joan D. Wada, Michael J. Costello, Mohsen A. Khatiblou
  • Patent number: 7360419
    Abstract: A gravity gradiometer having quadrupole responders in which a mass quadrupole is supported by a torsional spring forming a flexure allowing rotation of the mass quadrupole about its center of mass. The flexure can be a pair of spaced apart posts. The flexure can be made from glassy metal having at room temperature a high elastic limit, high stiffness, high strength and low internal damping. The flexure can alternatively be a web made of glassy metal.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: April 22, 2008
    Assignee: Gedex Inc.
    Inventors: John Barry French, Kieran A. Carroll, Steven J. Thorpe
  • Patent number: 7360421
    Abstract: A system for sensing velocity of a wheeled vehicle has a flexible arm connected to a speed sensor and wireless transmitter at one end and to an adjustable strap or clamp at the other end. The strap is attached near the wheel to be measured. The sensor can then be positioned via the flexible arm to a location immediately adjacent the wheel. There is also a display unit connected to another strap or clamp. The display unit contains a wireless receiver that receives the data transmitted by the transmitter on the sensor, and a microprocessor that calculates the data and displays it for the user to view. A magnetic strip is attached directly to one of the wheels of the device. As the wheel rotates, the magnetic strip passes by the sensor positioned adjacent the wheel, and this passage is recorded by the sensor.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: April 22, 2008
    Inventors: Adi Weber, Daniel Weber
  • Patent number: 7357025
    Abstract: A mass includes a first set of drive fingers interdigitated with a first array of fixed drive fingers and a second set of drive fingers interdigitated with a second array of fixed drive fingers. Each array of fixed drive fingers is affixed to a substrate using a plurality of anchors. The anchors for the first and second arrays of fixed drive fingers are arranged to be co-linear in a lateral direction relative to the motion of the mass.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: April 15, 2008
    Assignee: Analog Devices, Inc.
    Inventor: John A. Geen
  • Patent number: 7350415
    Abstract: A closed-loop, comb drive device that reduces certain “common mode” sensor errors. The device includes a comb structure, electronics, a substrate, and a position sensor. The comb structure includes two comb-drive sections, each having at least two subsections. The comb drive sub-sections in each section are positioned in a diagonal relationship to each other relative to the device axes. A separate pick-off section, along with the electronics, determine which of the two drive sections should receive a voltage differential, and the size of that differential. The diagonal relationship within each drive section eliminates many of the large scale factor errors which often occur in prior-art designs.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: April 1, 2008
    Assignee: Honeywell International Inc.
    Inventor: Peter LaFond
  • Patent number: 7347097
    Abstract: A servo compensating accelerometer includes a top housing half and a bottom housing half rigidly connected together, and each having coaxial threaded openings. A sensing element is positioned between the top and bottom halves and affixed to the bottom half. Top and bottom magnetic systems, each of which has a magnetic conductor, a permanent magnet and a field concentrator, the magnetic systems being mounted within the respective top and bottom halves of the housing using the threaded openings. A momentum sensor includes the top and bottom magnetic systems, and also includes two movable coils mounted on a plate and positioned within the magnetic systems. A differential angle sensor includes toroidal excitation coils located on the permanent magnets, the magnetic systems and the coils of the momentum sensor. Zero bias of the accelerometer's angular displacement sensor is tuned by adjusting the position of the magnetic systems by moving them in the threaded openings.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: March 25, 2008
    Assignee: Innalabs Technologies, Inc.
    Inventors: Mykola G. Chernyak, Gennadiy A. Skrypkovskyy
  • Patent number: 7347093
    Abstract: The invention provides an angular velocity sensor which is provided with a smoothing circuit having a large smoothing time constant so that it can be reduced in size and integrated into an IC. Smoothing circuit (9) is provided with first switch (11), first capacitor (12), second switch (13), second capacitor (17) and control signal feeding module (15). Control signal feeding module (15) feeds first switch (11) and second switch (13) with a signal for controlling ON/OFF. According to this configuration, an equivalently large smoothing time constant can be set by reducing the frequency of the switching control signal of control signal feeding module (15), even if the capacities of first capacitor (12) and second capacitor (17) are small. Especially in case the capacitors are integrated into an IC, their area of occupation can be reduced to reduce the size of the angular velocity sensor and integrate the same into the IC.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: March 25, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Keisuke Kuroda, Takeshi Uemura
  • Patent number: 7347094
    Abstract: A coupling apparatus allows anti-phase movements of inertial sensor element frames along parallel axes but substantially prevents in-phase movements of the frames. The coupling apparatus includes a bar coupled between first and second sensor element frames and at least one supporting structure supporting the bar. The at least one structure is coupled to a substrate underlying the frames. The structures allow the bar to rotate at a pivot point when the frames move in anti-phase to one another along substantially parallel axes but substantially prevent in-phase movements of the frames.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: March 25, 2008
    Assignee: Analog Devices, Inc.
    Inventors: John A. Geen, William A. Clark, Jinbo Kuang
  • Patent number: 7347095
    Abstract: The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: March 25, 2008
    Assignees: The Boeing Company, California Institute of Technology
    Inventors: Kirill V. Shcheglov, A. Dorian Challoner, Ken J. Hayworth, Dean V. Wiberg, Karl Y. Yee
  • Patent number: 7343802
    Abstract: A piezoelectric-vibrator series circuit including two series-connected piezoelectric vibrators to which stresses induced by a dynamic quantity are applied in opposite directions is used, and a Colpitts oscillator circuit is defined by the piezoelectric-vibrator series circuit and an amplifier circuit/load impedance circuit. A phase-difference-to-voltage converter circuit is provided to convert a phase difference between an output voltage of the oscillator circuit and a voltage at a piezoelectric-vibrator series node of the piezoelectric-vibrator series circuit into a voltage signal.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: March 18, 2008
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Muneharu Yamashita
  • Patent number: 7343801
    Abstract: A micromechanical capacitive acceleration sensor is described for picking up the acceleration of an object in at least one direction. The sensor includes a frame structure (110), a sensor inertia mass (101) made of a wafer and movably mounted relative to the frame structure (110) about a rotation axis, and a capacitive pick-up unit (120) for producing at least one capacitive output signal representing the position of the sensor mass (101) relative to the frame structure (110). The sensor inertia mass (101) has a center of gravity which offset relative to the rotation axis in a direction perpendicularly to a wafer plane for measuring accelerations laterally to the wafer plane. The sensor mass (101) and the frame structure (110) are made monolithically of one single crystal silicon wafer. A cover section (112) forms a common connector plane (150) for the connection of capacitor electrodes (125,126). Torqueable elements (105) form an electrically conducting bearing device for the sensor mass (101).
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: March 18, 2008
    Assignee: Conti Temic microelectronic GmbH
    Inventors: Konrad Kapser, Peter Knittl, Ulrich Prechtel, Helmut Seidel, Sebastian Toelg, Manfred Weinacht
  • Patent number: RE40347
    Abstract: A single crystal silicon substrate (1) is bonded through an SiO2 film (9) to a single crystal silicon substrate (8), and the single crystal silicon substrate (1) is made into a thin film. A cantilever (13) is formed on the single crystal silicon substrate (1), and the thickness of the cantilever (13) in a direction parallel to the surface of the single crystal silicon substrate (1) is made smaller than the thickness of the cantilever in the direction of the depth of the single crystal silicon substrate (1), and movable in a direction parallel to the substrate surface. In addition, the surface of the cantilever (13) and the part of the single crystal silicon substrate (1), opposing the cantilever (13), are respectively, coated with an SiO2 film (5), so that an electrode short circuit is prevented in a capacity-type sensor. In addition, a signal-processing circuit (10) is formed on the single crystal silicon substrate (1), so that signal processing is performed as the cantilever (13) moves.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: June 3, 2008
    Assignee: DENSO Corporation
    Inventor: Tetsuo Fujii