Patents Examined by Hua Qi
  • Patent number: 11149359
    Abstract: A physical vapor transport growth system includes a growth chamber charged with SiC source material and a SiC seed crystal in spaced relation and an envelope that is at least partially gas-permeable disposed in the growth chamber. The envelope separates the growth chamber into a source compartment that includes the SiC source material and a crystallization compartment that includes the SiC seed crystal. The envelope is formed of a material that is reactive to vapor generated during sublimation growth of a SiC single crystal on the SiC seed crystal in the crystallization compartment to produce C-bearing vapor that acts as an additional source of C during the growth of the SiC single crystal on the SiC seed crystal.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: October 19, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Avinash Gupta, Ilya Zwieback, Edward Semenas, Marcus Getkin, Patrick Flynn
  • Patent number: 11131038
    Abstract: An apparatus for physical vapor transport growth of semiconductor crystals having a cylindrical vacuum enclosure defining an axis of symmetry; a reaction-cell support for supporting a reaction cell inside the vacuum enclosure; a cylindrical reaction cell made of material that is transparent to RF energy and having a height Hcell defined along the axis of symmetry; an RF coil provided around exterior of the vacuum enclosure and axially centered about the axis of symmetry, wherein the RF coil is configured to generate a uniform RF field along at least the height Hcell; and, an insulation configured for generating thermal gradient inside the reaction cell along the axis of symmetry. The ratio of height of the RF induction coil, measured along the axis of symmetry, to the height Hcell may range from 2.5 to 4.0 or from 2.8 to 4.0.
    Type: Grant
    Filed: July 5, 2019
    Date of Patent: September 28, 2021
    Assignee: SK SILTRON CSS, LLC
    Inventor: Mark Loboda
  • Patent number: 11118285
    Abstract: Provided is a method of evaluating cleanliness of a member having a silicon carbide surface, the method including bringing the silicon carbide surface into contact with a mixed acid of hydrofluoric acid, hydrochloric acid and nitric acid; concentrating the mixed acid brought into contact with the silicon carbide surface by heating; subjecting a sample solution obtained by diluting a concentrated liquid obtained by the concentration to quantitative analysis of metal components by Inductively Coupled Plasma-Mass Spectrometry; and evaluating cleanliness of the member having a silicon carbide surface on the basis of a quantitative result of metal components obtained by the quantitative analysis.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: September 14, 2021
    Inventors: Takashi Muramatsu, Hirokazu Kato
  • Patent number: 11104995
    Abstract: Disclosed is a substrate processing apparatus capable of improving the characteristic of a film formed on the surface of a wafer, using a single-wafer type substrate processing apparatus which heats and processes a wafer. The substrate processing apparatus may include: a processing vessel where a substrate is processed; a substrate supporter including: a first heater configured to heat the substrate to a first temperature; and a substrate placing surface where the substrate is placed; a heated gas supply system including a second heater configured to heat an inert gas, wherein the heated gas supply system is configured to supply a heated inert gas into the processing vessel; and a controller configured to control the first heater and the second heater such that a temperature of a front surface of the substrate and a temperature of a back surface of the substrate are in a predetermined range.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: August 31, 2021
    Assignee: Kokusai Electric Corporation
    Inventors: Takashi Yahata, Satoshi Takano, Kazuyuki Toyoda, Naofumi Ohashi, Tadashi Takasaki
  • Patent number: 11101428
    Abstract: A method of manufacturing a monocrystalline layer, comprises the following successive steps: providing a donor substrate comprising a piezoelectric material of composition ABO3, where A consists of at least one element from among Li, Na, K, H, Ca; and B consists of at least one element from among Nb, Ta, Sb, V; providing a receiver substrate, transferring a layer called the “seed layer” from the donor substrate on to the receiver substrate, such that the seed layer is at the bonding interface, followed by thinning of the donor substrate layer; and growing a monocrystalline layer of composition A?B?O3 on piezoelectric material ABO3 of the seed layer where A? consists of a least one of the following elements Li, Na, K, H; B? consists of a least one of the following elements Nb, Ta, Sb, V; and A? is different from A or B? is different from B.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 24, 2021
    Assignee: SOITEC
    Inventors: Bruno Ghyselen, Jean-Marc Bethoux
  • Patent number: 11101141
    Abstract: A method for reducing defects of an electronic component using a supercritical fluid includes recrystallizing and rearranging grains in the electronic component by introducing the supercritical fluid doped with H2S together with an electromagnetic wave into a cavity. The cavity has a temperature above a critical temperature of the supercritical fluid and a pressure above a critical pressure of the supercritical fluid.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: August 24, 2021
    Inventors: Ting-Chang Chang, Kuan-Chang Chang, Chih-Cheng Shih, Chih-Hung Pan
  • Patent number: 11078597
    Abstract: A method for making an epitaxial structure includes the following steps. A substrate having an epitaxial growth surface is provided. A carbon nanotube layer is placed on the epitaxial growth surface. A buffer layer is formed on the epitaxial growth surface. A first epitaxial layer is epitaxially grown on the buffer layer. The substrate and the buffer layer are separated to form a second epitaxial growth surface. A second epitaxial layer is epitaxially grown on the second epitaxial growth surface.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: August 3, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 11072870
    Abstract: A crystal pulling system for growing a monocrystalline ingot from a melt of semiconductor or solar-grade material includes a crucible for containing the melt of material, a pulling mechanism configured to pull the ingot from the melt along a pull axis, and a multi-stage heat exchanger defining a central passage for receiving the ingot as the ingot is pulled by the pulling mechanism. The heat exchanger defines a plurality of cooling zones arranged vertically along the pull axis of the crystal pulling system. The plurality of cooling zones includes two enhanced-rate cooling zones and a reduced-rate cooling zone disposed vertically between the two enhanced-rate cooling zones.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: July 27, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Gaurab Samanta, Parthiv Daggolu, Benjamin Michael Meyer, William L. Luter, Jae Woo Ryu, Eric Michael Gitlin
  • Patent number: 11060202
    Abstract: Single crystal semiconductor ingots are pulled from a melt contained in a crucible by a method of controlling the pulling the single crystal in a phase in which an initial cone of the single crystal is grown until a phase in which the pulling of a cylindrical section of the single crystal is begun, by measuring the diameter Dcr of the initial cone of the single crystal and calculating the change in the diameter dDcr/dt; pulling the initial cone of the single crystal from the melt at a pulling rate vp(t) from a point in time t1 until a point in time t2, starting from which the pulling of the cylindrical section of the single crystal in conjunction with a target diameter Dcrs is begun, wherein the profile of the pulling rate vp(t) from the point in time t1 until the point in time t2 during the pulling of the initial cone is predetermined by means of an iterative computation process.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: July 13, 2021
    Assignee: SILTRONIC AG
    Inventors: Thomas Schroeck, Walter Heuwieser
  • Patent number: 11035054
    Abstract: In an apparatus and method growing a SiC single crystal, a PVT growth apparatus is provided with a single crystal SiC seed and a SiC source material positioned in spaced relation in a growth crucible. A resistance heater heats the growth crucible such that the SiC source material sublimates and is transported via a temperature gradient that forms in the growth crucible in response to the heater heating the growth crucible to the single crystal SiC seed where the sublimated SiC source material condenses forming a growing SiC single crystal. Purely axial heat fluxes passing through the bottom and the top of the growth crucible form a flat isotherm at least at a growth interface of the growing SiC single crystal on the single crystal SiC seed.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: June 15, 2021
    Assignee: II-VI DELAWARE, INC.
    Inventors: Xueping Xu, Ilya Zwieback, Avinash K. Gupta, Varatharajan Rengarajan
  • Patent number: 11028497
    Abstract: A single crystal production apparatus that is designed to produce a single crystal by cooling a melting zone formed by a heating part including an infrared generation part and a reflection part, wherein: the reflection part includes a spheroidal mirror and a concave spherical mirror; the infrared generation part is disposed at one focal point of the spheroidal mirror; an opening is formed in the spheroidal mirror on the side of the other focal point of the spheroidal mirror; and the one focal point and the spherical center of the concave spherical mirror fall on the same location.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 8, 2021
    Inventor: Shin Akutsu
  • Patent number: 11021809
    Abstract: A method of producing a synthetic diamond is disclosed, the method comprising: (a) capturing carbon dioxide from the atmosphere; (b) conducting electrolysis of water to provide hydrogen; (c) reacting the carbon dioxide obtained from step (a) with the hydrogen obtained from step (b) to produce methane; and (d) using the hydrogen obtained from step (b) and the methane obtained from step (c) to produce a synthetic diamond by chemical vapour deposition (CVD).
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: June 1, 2021
    Inventor: Dale Vince
  • Patent number: 11001937
    Abstract: The disclosure relates to a method for making semimetal compound of Pt. The semimetal compound is a single crystal material of PtSe2. The method comprises: placing pure Pt and pure Se in a reacting chamber as reacting materials; evacuating the reacting chamber to be vacuum less than 10 Pa; heating the reacting chamber to a first temperature of 600 degrees Celsius to 800 degrees Celsius and keeping for 24 hours to 100 hours; cooling the reacting chamber to a second temperature of 400 degrees Celsius to 500 degrees Celsius at a cooling rate of 1 degrees Celsius per hour to 10 degrees Celsius per hour and keeping for 24 hours to 100 hours to obtain a crystal material of PtSe2; and separating the excessive reacting materials from the crystal material of PtSe2.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: May 11, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ke-Nan Zhang, Ming-Zhe Yan, Shu-Yun Zhou, Yang Wu, Shou-Shan Fan
  • Patent number: 10968533
    Abstract: A system for growing silicon crystal structures includes a housing defining a growth chamber and a feed system connected to the housing for delivering silicon particles to the growth chamber. The feed system includes a container for holding the silicon particles. The container includes an outlet for discharging the silicon particles. The feed system also includes a channel connected to the outlet such that silicon particles discharged from the container flow through the channel. The feed system further includes a separation valve connected to the channel and to the housing. The separation valve is configured such that a portion of the feed system rotates relative to the housing.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: April 6, 2021
    Assignee: Corner Star Limited
    Inventors: Stephan Haringer, Gianni Dell'Amico, Giancarlo Zago, Renzo Odorizzi, Giorgio Agostini, Marco Zardoni
  • Patent number: 10937649
    Abstract: Described herein is a method for growing InN, GaN, and AlN materials, the method comprising alternate growth of GaN and either InN or AlN to obtain a film of InxGa1?xN, AlxGa1?xN, AlxIn1?xN, or AlxInyGa1?(x+y)N.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: March 2, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, Jr., Nadeemmullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Patent number: 10934635
    Abstract: There is provided a method of fabricating a trapped vacancy in a crystal lattice of a target comprising: positioning the target in a laser system, the target containing vacancy trapping elements within the crystal lattice; modifying the crystal lattice within the target by using a laser to generate a lattice vacancy; and annealing the target to cause the lattice vacancy to migrate and be captured by a vacancy trapping element to form the trapped vacancy in the crystal lattice.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 2, 2021
    Assignee: Oxford University Innovation Limited
    Inventors: Martin James Booth, Patrick Salter, Jason Smith, Yu-Chen Chen
  • Patent number: 10920337
    Abstract: Methods for forming single crystal silicon ingots with improved resistivity control and, in particular, methods that involve gallium or indium doping are disclosed. In some embodiments, the ingots are characterized by a relatively high resistivity.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 16, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Richard J. Phillips, Parthiv Daggolu, Eric Gitlin, Robert Standley, HyungMin Lee, Nan Zhang, Jae-Woo Ryu, Soubir Basak
  • Patent number: 10900143
    Abstract: A polycrystalline silicon rod is formed of polycrystalline silicon deposited radially around a silicon core line and is characterized by, in a cross-section that is a perpendicular cut in respect to the axial direction of a cylindrical rod, a ratio of surface area covered by coarse crystal particles having a diameter of 50 ?m or greater is 20% or more of the crystal observed at the face, excluding the core line portion.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 26, 2021
    Assignee: Tokuyama Corporation
    Inventors: Haruyuki Ishida, Tetsuya Imura, Yasumasa Aimoto
  • Patent number: 10892179
    Abstract: A ceramic layer is attached to a top surface of a base plate using a bond layer. The ceramic layer has a top surface configured to support a substrate. A clamp electrode assembly is positioned within an upper region of the ceramic layer. The clamp electrode assembly serves to clamp the substrate to the top surface of the ceramic layer and functions as a primary radiofrequency (RF) power delivery electrode. A plurality of RF power delivery connection modules is distributed in a substantially uniform manner about a perimeter of the ceramic layer. Each of the RF power delivery connection modules is configured to form an electrical connection from the base plate to the clamp electrode assembly at its respective location.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: January 12, 2021
    Assignee: Lam Research Corporation
    Inventors: Neil Martin Paul Benjamin, Henry Povolny, Anthony J. Ricci
  • Patent number: 10889913
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 12, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella