Patents Examined by Huy-Tram Nguyen
  • Patent number: 10403940
    Abstract: The present disclosure relates generally to systems and methods for recycling lead-acid batteries, and more specifically, relates to purifying and recycling the lead content from lead-acid batteries. A system includes a reactor that receives and mixes a lead-bearing material waste, a carboxylate source, and a recycled liquid component to form a leaching mixture yielding a lead carboxylate precipitate. The system also includes a phase separation device coupled to the reactor, wherein the phase separation device isolates the lead carboxylate precipitate from a liquid component of the leaching mixture. The system further includes a closed-loop liquid recycling system coupled to the phase separation device and to the reactor, wherein the closed-loop liquid recycling system receives the liquid component isolated by the phase separation device and recycles a substantial portion of the received liquid component back to the reactor as the recycled liquid component.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: September 3, 2019
    Assignee: CPS TECHNOLOGY HOLDINGS LLC
    Inventors: Eberhard Meissner, Jr., Jürgen Bauer, Matthew A. Spence
  • Patent number: 10400175
    Abstract: Embodiments of apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material are provided herein. The apparatus comprises a reheater for containing a fluidized bubbling bed comprising an oxygen-containing gas, inorganic heat carrier particles, and char and for burning the char into ash to form heated inorganic particles. An inorganic particle cooler is in fluid communication with the reheater to receive a first portion of the heated inorganic particles. The inorganic particle cooler is configured to receive a cooling medium for indirect heat exchange with the first portion of the heated inorganic particles to form first partially-cooled heated inorganic particles that are fluidly communicated to the reheater and combined with a second portion of the heated inorganic particles to form second partially-cooled heated inorganic particles. A reactor is in fluid communication with the reheater to receive the second partially-cooled heated inorganic particles.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 3, 2019
    Assignee: Ensyn Renewables, Inc.
    Inventors: Sathit Kulprathipanja, Paolo Palmas
  • Patent number: 10400178
    Abstract: Systems, apparatuses and methods of utilizing a Fischer-Tropsch (“FT”) tail gas purge stream for recycling are disclosed. One or more methods include removing an FT tail gas purge stream from an FT tail gas produced by an FT reactor, treating the FT tail gas purge stream with steam in a water gas shift (“WGS”) reactor, having a WGS catalyst, to produce a shifted FT purge stream including carbon dioxide and hydrogen, and removing at least a portion of the carbon dioxide from the shifted FT purge stream, producing a carbon dioxide stream and a treated purge stream. Other embodiments are also disclosed.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: September 3, 2019
    Assignee: SGCE LLC
    Inventors: Bruce Allen Logue, II, Scot Golczynski
  • Patent number: 10384182
    Abstract: A column includes a column head, a column sump and a tube-shaped column shell disposed therebetween, two or more reaction zones lying above each other which each accommodate a catalyst bed, in which catalyst beds chlorosilanes disproportionate into low-boiling silanes, which form an ascending stream of gas, and also into high-boiling silanes which form a downwardly directed stream of liquid, within the column shell and along the column axis, two or more rectificative separation zones, the reaction zones and the separation zones alternate along the column axis, the separation zones are configured such that the stream of gas and the stream of liquid meet in the separation zones, and the reaction zones are configured such that the downwardly directed stream of liquid is led through the catalyst beds, whereas the upwardly directed stream of gas passes the catalyst beds in spatial separation from the stream of liquid.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: August 20, 2019
    Assignee: Schmid Silicon Technology GmbH
    Inventors: Christian Schmid, Jochem Hahn, Christian Andreas Fuhrmann
  • Patent number: 10384181
    Abstract: An apparatus is provided for directing a fluid in a radial reactor comprising: a vertically elongated conduit comprising a front face comprising a surface comprising apertures, two side faces, and a rear face and two ends, wherein an end of the front face and an end of the rear face are a distance D1 apart and wherein a second opposite end of the front face and a second corresponding end of the rear face are a distance D2 apart wherein D1 is greater than D2 and wherein a riser are connected to a top surface of said vertically elongated conduit to allow a gas stream to flow through the riser to the vertically elongated conduit.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: August 20, 2019
    Assignee: UOP LLC
    Inventors: Jeffrey R. Grott, Michael J. Vetter
  • Patent number: 10363533
    Abstract: A tubular reactor that produces maleic anhydride from a gas mixture containing n-butane and oxygen includes a first reaction zone including an inlet for the gas mixture and a second reaction zone including an outlet for a reaction gas mixture, a plurality of tubes extending in an axial direction through the first and second reaction zones, a temperature control system, configured for controlling a reaction temperature in each of the reaction zones independently, includes a heat transfer system for each of the reaction zones configured for controlling the temperature of a liquid coolant flowing through one of the reaction zones, and a circulation pumping system configured for controlling flow conditions of the liquid coolant flowing through the reactor and one of the heat transfer systems, and a preheating arrangement configured for preheating the gas mixture such that the gas mixture enters the first reaction zone at a predefined inlet temperature.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 30, 2019
    Assignee: Technobell d.o.o. Koper
    Inventor: Gabor Toth
  • Patent number: 10359235
    Abstract: An industrial production plant including at least one reactor for producing a flue gas and including a heat exchanger system having a first heat exchanger section for heat exchange between the flue gas and a fluid and a second heat exchanger section for heat exchange between the flue gas and reaction air for the reactor, which can be preheated by the second heat exchanger section. The first heat exchanger section is configured as a double-tube heat exchanger with first tubes each arranged one-way in a respective first jacket tube, and the second heat exchanger section is configured as a tube bundle heat exchanger with a tube bundle of second tubes arranged in a second jacket tube and each arranged one-way in the jacket tube.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: July 23, 2019
    Assignee: ARVOS GMBH
    Inventors: Silke Jagusch, Jürgen Lauer, Gregory Gene Homoki, James Francis Geisler
  • Patent number: 10350565
    Abstract: Disclosed herein is a catalyst dumping spool assembly for unloading used catalyst from an inside of a reactor, comprising: a reactor, and a catalyst dumping spool comprising a first end operatively connected to the reactor, the first end having a catalyst inlet through which the used catalyst is introduced into, a second end having a catalyst discharge outlet whereby the used catalyst exits the catalyst dumping spool, wherein a first device for controlling used catalyst transfer into the catalyst inlet is positioned proximate the first end, and a second device for controlling the used catalyst transfer from inside the catalyst inlet through the catalyst discharge outlet is positioned proximate the second end, and further wherein the catalyst dumping spool further comprise a gas fluidization inlet and a water fluidization inlet located between the first and second devices.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: July 16, 2019
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jeff William Johns, Douglas Gayle McDaniel, Anthony Terrell Tanner, Edward Earl Eden, Jr.
  • Patent number: 10343904
    Abstract: A member for hydrogen production includes a ceramic composite in which a plurality of ceramic particles having an average particle diameter ranging from 5 nm to 200 nm are dispersed in a porous insulator having a different component from the ceramic particles. The ceramic particles comprise at least one substance selected from the group consisting of AXO3±? (where 0???1, A: at least one of rare earth elements, alkaline earth elements, and alkali metal elements, X: at least one of transition metal elements and metalloid elements, and O: oxygen), cerium oxide, and zirconium oxide as a main component.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: July 9, 2019
    Assignee: KYOCERA CORPORATION
    Inventors: Masahide Akiyama, Takeshi Ohkuma
  • Patent number: 10343923
    Abstract: The system for preparing silica aerogel comprises a raw material supply part transferring at least one raw material of de-ionized water, water glass, a surface modifier, an inorganic acid, and an organic solvent to a mixing part, the mixing part mixing the raw materials transferred from the raw material supply part to produce silica wet gel, a separating part separating at least one raw material of the raw materials from the mixture containing the silica wet gel transferred from the mixing part, a drying part drying the silica wet gel transferred from the separating part to produce the silica aerogel, a recovery part recovering a portion of the vaporized raw material of the raw materials used in at least one of the mixing part and the drying part, and a heat transfer part transferring heat to at least one of the mixing part and the drying part.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: July 9, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Dong Kwon Lee, Ye Hon Kim, Jong Ku Lee, Je Kyun Lee
  • Patent number: 10343128
    Abstract: A reaction-regeneration device for catalytic dehydrogenation or/and catalytic cracking of alkanes comprises a reaction device and a regeneration device. The reaction device comprises a reactor and a disengager, and the disengager is located at an upper part of the reactor. The reactor comprises a tapering section, and diameters of cross sections of the tapering section gradually decrease from bottom to top. Secondary conversion of alkenes caused by back-mixing is reduced, and thus the yield and selectivity to alkenes are increased.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: July 9, 2019
    Assignee: CHINA UNIVERSITY OF PETROLEUM (EAST CHINA)
    Inventors: Chunyi Li, Guowei Wang
  • Patent number: 10335755
    Abstract: A reaction apparatus includes a hollow chamber with a stirring shaft. The chamber is maintained at a predetermined pressure and accepts at least two reactants from two storage tanks. The stirring shaft rotates around an axis and creates a reaction product. Taylor vortexes are created while the pressure minimizes the volume possession of the gas phase. The reaction product of micron and sub-micron particles is removed from the chamber and depressurized.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: July 2, 2019
    Assignee: U.S. Department of Energy
    Inventors: Youngho Shin, Ozgenur Kahvecioglu Feridun, Gregory K. Krumdick
  • Patent number: 10336952
    Abstract: An improved vortex-type mixing device for a down-flow hydroprocessing reactor is described. The device provides improved overall mixing efficiency of an existing mixing volume in the mixing of gas and liquid phases in two-phase systems while reducing the pressure drop through the device, as compared with prior art devices. Typical hydroprocessing applications include hydrotreating, hydrofinishing, hydrocracking and hydrodewaxing.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: July 2, 2019
    Assignee: Chevron U.S.A. Inc.
    Inventors: Steve Xugi Song, Parimi Krishniah, Timothy D. Breig, Brett Michael Safford
  • Patent number: 10328412
    Abstract: The current disclosure is directed to a hydrogen-storage system that employs catalytic dehydrogenation of low-molecular-weight amines in a hydrogen reactor. The hydrogen-storage system comprises aliphatic amines and di-amines as organic carriers that store hydrogen covalently, a hydrogen reactor that releases and separates hydrogen gas from the carrier, and metal or metal-oxide catalysts that promote a dehydrogenation reaction to release hydrogen. In certain implementations, a metal or metal-oxide catalyst may be carried on high-surface-area support materials, such as gamma-alumina and metal-organic-framework materials, to enhance catalytic properties. The hydrogen reactor may be a packed-bed reactor, a monolith reactor, or a flow-through hydrogen-membrane reactor.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: June 25, 2019
    Inventors: Esmaeel Naeemi, David G. O'Connor, Maitham Naeemi
  • Patent number: 10329159
    Abstract: In a cooled axial/radial flow converter, in which process gas passes from an outer annulus via a catalyst bed to an inner center tube, the catalyst bed is divided into identical modules stacked on top of each other. The process gas reaches the catalyst through openings facing the outer annulus, passes axially down the catalyst bed of each module, leaves the module through collectors in the bottom thereof, and flows to the center tube. The catalyst bed is cooled by cooling panels, in which the process gas is pre-heated to the reaction temperature, while at the same time the heat of reaction is partly removed from the catalyst bed. The converter is especially suitable as ammonia converter.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: June 25, 2019
    Assignee: Haldor Topsoe A/S
    Inventor: Christian Henrik Speth
  • Patent number: 10315182
    Abstract: Proposed is a cylindrical reactor (1) having a vertical longitudinal axis for continuous hydroformylation of a C6-C20-olefin or a mixture of C6-C20-olefins with synthesis gas in the presence of a homogeneously dissolved metal carbonyl complex catalyst, having a multiplicity of Field tubes (2) which are oriented parallel to the longitudinal axis of the reactor (1) and welded into a tube plate at the upper end of the reactor (1), having a circulation tube (3) open at both ends which envelops the Field tubes (2) and at its lower end projects beyond said tubes, having a jet nozzle (4) at the bottom of the reactor (1) for injecting the reactant mixture comprising the C6-C20-olefin, the synthesis gas and the metal carbonyl complex catalyst, wherein the Field tubes (2) are configured in terms of their number and their dimensions such that the total heat exchanger area of said tubes per unit internal volume of the reactor is in the range from 1 m2/m3 to 11 m2/m3 and the cross sectional area occupied by the Field t
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: June 11, 2019
    Assignee: BASF SE
    Inventors: Rainer Papp, Oliver Christian Gobin, Oliver Bey, Jens Rudolph, Hans-Günter Thelen
  • Patent number: 10307721
    Abstract: A reaction-regeneration device for catalytic dehydrogenation or/and catalytic cracking of alkanes comprises a reaction device and a regeneration device. The reaction device comprises a reactor and a disengager, and the disengager is located at an upper part of the reactor. The reactor comprises a tapering section, and diameters of cross sections of the tapering section gradually decrease from bottom to top. Secondary conversion of alkenes caused by back-mixing is reduced, and thus the yield and selectivity to alkenes are increased.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: June 4, 2019
    Assignee: CHINA UNIVERSITY OF PETROLEUM (EAST CHINA)
    Inventors: Chunyi Li, Guowei Wang
  • Patent number: 10272408
    Abstract: Disclosed is provided to overcome problems of conventional methods using each of a solid discharge nozzle and a screw conveyer. According to one exemplary embodiment of the present invention, a fluidized bed system is provided to circulate solids using pressure and density difference. More particularly, a fluidized solid circulation system using pressure and density difference is characterized by comprising: a first fluidized bed reactor; a second fluidized bed reactor; a first cyclone; a second cyclone; a first pressure control valve; a second pressure control valve; a lower loop seal; an upper loop seal; and a control part, thereby circulating the solids between the first fluidized bed reactor and the second fluidized bed reactor.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: April 30, 2019
    Assignee: Korea Institute of Energy Research
    Inventors: Ho-jung Ryu, Doyeon Lee, Gyoung-tae Jin, Chang-keun Yi, Dowon Shun, Jaehyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, Young Cheol Park, Jong-ho Moon, Dong-ho Lee
  • Patent number: 10258955
    Abstract: Disclosed microscale reactors comprise lamina for carrying out multi-phase reactions for making desired chemical products, such as biohydrogenated diesel (BHD). Microreactor embodiments include a bottom clamp plate, a top clamp plate, and at least one catalyst plate positioned between and operatively associated with the bottom clamp plate and the top clamp plate. Catalyst plates include a catalyst associated for catalyzing the production of product from feedstock. To address the problems encountered when using microchannel reactors, the microscale-based reactors may include a mixer plate assembly and/or at least one catalyst lamina comprising an array of microscale posts. Disclosed microreactor systems for producing BHD include a feedstock source, a hydrogen source and an inert gas source each fluidly coupled to respective microreactor inlets.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: April 16, 2019
    Assignee: PTT PUBLIC COMPANY LIMITED
    Inventors: Goran Nadezda Jovanovic, Frederick Atadana
  • Patent number: 10252241
    Abstract: The present invention provides a spring tube type flexible micro chemical reactor. It comprises a reactor body, a thermal control device, and a gas generating device. The spring tube type flexible micro chemical reactor enhances the heat and mass transfer using the scroll spring tube, which is able to achieve accurate mixing and dynamic adjustment of the heat and mass transfer and is able to effectively solve the problems of blocking of channels by solid reactant, the poor portability of the reaction, etc.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: April 9, 2019
    Assignee: DONGGUAN UNIVERSITY OF TECHNOLOGY
    Inventors: Simin Huang, Kui He, Guanfeng Qin