Patents Examined by Ilia I Ouspenski
  • Patent number: 10370428
    Abstract: The present invention provides soluble CTLA4 mutant molecules which bind with greater avidity to the CD80 and/or CD86 antigen than wild type CTLA4 or non-mutated CTLA4Ig. The soluble CTLA4 molecules have a first amino acid sequence comprising the extracellular domain of CTLA4, where certain amino acid residues within the S25-R33 region and M97-G107 region are mutated. The mutant molecules of the invention may also include a second amino acid sequence which increases the solubility of the mutant molecule.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: August 6, 2019
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Robert James Peach, Joseph Naemura, Peter S. Linsley, Jurgen Bajorath
  • Patent number: 10370448
    Abstract: The present invention is based, in part, on the identification of novel human anti-PD-1, PD-L1, and PD-L2 antibodies. Accordingly, the invention relates to compositions and methods for diagnosing, prognosing, and treating conditions that would benefit from modulating PD-1, PD-1, and/or PD-L2 activity (e.g., persistent infectious diseases autoimmune diseases, asthma, transplant rejection, inflammatory disorders and tumors) using the novel human anti-PD-1, PD-L1, and PD-L2 antibodies described herein.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: August 6, 2019
    Assignees: EMORY UNIVERSITY, DANA-FARBER CANCER INSTITUTE, INC.
    Inventors: Gordon J. Freeman, Rafi Ahmed, Timothy D. Jones, Francis J. Carr, James P. Gregson
  • Patent number: 10370455
    Abstract: The receptor for VISTA is identified (VSIG8) as well as the use of this receptor in the identification or synthesis of agonist or antagonist compounds, preferably antibodies, polypeptides and fusion proteins which agonize or antagonize the effects of VSIG8 and/or VISTA and/or the VSIG8/VISTA binding interaction. These antagonists may be used to suppress VISTA's suppressive effects on T cell immunity, and more particularly used in the treatment of cancer, or infectious disease. These agonist compounds may be used to potentiate or enhance VISTA's suppressive effects on T cell immunity and thereby suppress T cell immunity, such as in the treatment of autoimmunity, allergy or inflammatory conditions. Screening assays for identifying these agonists and antagonist compounds are also provided.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: August 6, 2019
    Assignee: IMMUNEXT, INC.
    Inventors: Michael Molloy, Yalin Guo, Jay Rothstein, Michael Rosenzweig
  • Patent number: 10371702
    Abstract: Disclosed herein are methods of treatment of autoimmune diseases such as systemic lupus erythematosus (SLE) as well as clinical assays for detection of autoimmune disease activity in patients utilizing a PD1 ligand.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: August 6, 2019
    Assignee: SEATTLE CHILDREN'S HOSPITAL
    Inventors: Neelufar Mozaffarian, Anne M. Stevens
  • Patent number: 10364287
    Abstract: The invention relates to humanized antibodies directed against the human lymphocyte receptor CD28. When used in a monovalent form these antibodies are antagonists, i.e. capable of blocking of the CD28/B7 interaction, without activating CD28. These antibodies can be used in particular as therapeutic agents for blocking T cell activation through the CD28 receptor.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: July 30, 2019
    Assignees: Institut National de la Sante et de la Recherche Medicale, OSE Immunotherapeutics
    Inventors: Caroline Mary, Nicolas Poirier, Bernard Vanhove
  • Patent number: 10357561
    Abstract: The invention provides novel BTNL9 proteins, including multimers, fragments, and variants of a human BTNL9 protein. In addition, antibodies that can bind to BTNL9 proteins and nucleic acids encoding BTNL9 proteins are provided. Uses for BTNL9 proteins, and agonists or antagonists thereof, are described.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: July 23, 2019
    Inventors: Heather A. Arnett, Sabine S. Escobar, Ryan M. Swanson, Joanne L. Viney
  • Patent number: 10351627
    Abstract: The present invention relates to an ICOS binding protein or antigen binding portion thereof that is an agonist to human ICOS and does not induce complement, ADCC, or CDC when placed in contact with a T cell in vivo and methods of treating cancer, infectious disease and/or sepsis with said ICOS binding protein or antigen binding portion thereof. Further the ICOS binding proteins or antigen binding portions thereof of the present invention are capable of activating a T cell when placed in contact with said T cell; stimulating T cell proliferation when placed in contact with said T cell and/or inducing cytokine production when placed in contact with said T cell. The present invention relates to ICOS binding proteins or antigen binding portions thereof comprising one or more of: SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; and/or SEQ ID NO:6.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 16, 2019
    Assignee: GlaxoSmithKline Intellectual Property Development Limited
    Inventors: Yao-Bin Liu, Patrick Mayes, Radha Shah Parmar
  • Patent number: 10344090
    Abstract: The present invention provides a human PD-1 antibody, an antigen-binding fragment thereof, and medical use thereof, and further provides a chimeric antibody and humanized antibodies comprising a complementarity-determining region (CDR) of the antibody, a pharmaceutical composition comprising the human PD-1 antibody and the antigen-binding fragment thereof, and use of the antibody in preparing medicines for treating diseases or disorders.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: July 9, 2019
    Assignees: Shanghai Hangrui Pharmaceutical Co., Ltd., Jiangsu Hangrui Medicine Co., Ltd.
    Inventors: Jijun Yuan, Xiangdong Qu, Jufang Lin, Xin Ye, Guoqing Cao, Weikang Tao, Lianshan Zhang, Lei Zhang, Li Yang
  • Patent number: 10336823
    Abstract: Provided herein are methods of treating B7-H1-expressing tumors comprising administering an effective amount of MEDI4736 or an antigen-binding fragment thereof.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: July 2, 2019
    Assignee: MedImmune Limited
    Inventors: Rajesh Narwal, David Fairman, Paul Robbins, Meina Liang, Amy Schneider, Carlos Chavez, Carina Herl, Min Pak, Hong Lu, Marlon Rebelatto, Keith Steele, Anmarie Boutrin, Li Shi, Shengyan Hong, Brandon Higgs, Lorin Roskos
  • Patent number: 10323092
    Abstract: The disclosure provides a method for immunotherapy of a subject afflicted with cancer, comprises administering to the subject a composition comprising a therapeutically effective amount of an antibody that inhibits signaling from the PD-1/PD-L1 signaling pathway. This disclosure also provides a method for immunotherapy of a subject afflicted with cancer comprising selecting a subject that is a suitable candidate for immunotherapy based on an assessment that the proportion of cells in a test tissue sample from the subject that express PD-L1 on the cell surface exceeds a predetermined threshold level, and administering a therapeutically effective amount of an anti-PD-1 antibody to the selected subject. The invention additionally provides rabbit mAbs that bind specifically to a cell surface-expressed PD-L1 antigen in a FFPE tissue sample, and an automated IHC method for assessing cell surface expression in FFPE tissues using the provided anti-PD-L1 Abs.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: June 18, 2019
    Assignee: Bristol-Myers Squibb Company
    Inventors: John P. Cogswell, Stacie M. Goldberg, Ashok K. Gupta, Maria Jure-Kunkel, Xi-Tao Wang, Jon M. Wigginton
  • Patent number: 10323091
    Abstract: The instant disclosure provides antibodies that specifically bind to human PD-1 and antagonize PD-1 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: June 18, 2019
    Assignees: Agenus Inc., Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd
    Inventors: Marc van Dijk, Nicholas Stuart Wilson, Cornelia Anne Mundt, Gerd Ritter, Jedd David Wolchok, Taha Merghoub, Roberta Zappasodi, Rikke Bæk Holmgaard, David Schaer, David Adam Savitsky
  • Patent number: 10323093
    Abstract: The disclosure provides a method for immunotherapy of a subject afflicted with cancer, comprises administering to the subject a composition comprising a therapeutically effective amount of an antibody that inhibits signaling from the PD-1/PD-L1 signaling pathway. This disclosure also provides a method for immunotherapy of a subject afflicted with cancer comprising selecting a subject that is a suitable candidate for immunotherapy based on an assessment that the proportion of cells in a test tissue sample from the subject that express PD-L1 on the cell surface exceeds a predetermined threshold level, and administering a therapeutically effective amount of an anti-PD-1 antibody to the selected subject. The invention additionally provides rabbit mAbs that bind specifically to a cell surface-expressed PD-L1 antigen in a FFPE tissue sample, and an automated IHC method for assessing cell surface expression in FFPE tissues using the provided anti-PD-L1 Abs.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 18, 2019
    Assignee: Bristol-Myers Squibb Company
    Inventors: John P. Cogswell, Stacie M. Goldberg, Ashok K. Gupta, Maria Jure-Kunkel, Xi-Tao Wang, Jon M. Wigginton
  • Patent number: 10316092
    Abstract: The present invention relates to antibodies and their antigen-binding fragments and to other molecules that are capable of immunospecifically binding to the B7-H5 ligand of the B7-H5:CD28H pathway, and to the uses of such molecules in the treatment and diagnosis of autoimmune disease, transplant rejection and other inflammatory diseases.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: June 11, 2019
    Assignees: THE JOHN HOPKINS UNIVERSITY, MEDIMMUNE, LLC
    Inventors: Sheng Yao, Lieping Chen, Linda Liu, Solomon Langermann
  • Patent number: 10316089
    Abstract: The present invention relates to antibodies that bind human programmed cell death 1 (PD-1), and may be useful for treating cancer alone and in combination with chemotherapy and other cancer therapeutics.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: June 11, 2019
    Assignee: INNOVENT BIOLOGICS (SUZHOU) CO. LTD.
    Inventors: Hemanta Baruah, Cheng Chen, Xiaolin Liu, Andy Tsun, Dechao Michael Yu
  • Patent number: 10316091
    Abstract: The disclosure provides a method for immunotherapy of a subject afflicted with cancer, comprises administering to the subject a composition comprising a therapeutically effective amount of an antibody that inhibits signaling from the PD-1/PD-L1 signaling pathway. This disclosure also provides a method for immunotherapy of a subject afflicted with cancer comprising selecting a subject that is a suitable candidate for immunotherapy based on an assessment that the proportion of cells in a test tissue sample from the subject that express PD-L1 on the cell surface exceeds a predetermined threshold level, and administering a therapeutically effective amount of an anti-PD-1 antibody to the selected subject. The invention additionally provides rabbit mAbs that bind specifically to a cell surface-expressed PD-L1 antigen in a FFPE tissue sample, and an automated IHC method for assessing cell surface expression in FFPE tissues using the provided anti-PD-L1 Abs.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 11, 2019
    Assignee: Bristol-Myers Squibb Company
    Inventors: John P. Cogswell, Stacie M. Goldberg, Ashok K. Gupta, Maria Jure-Kunkel, Xi-Tao Wang, Jon M. Wigginton
  • Patent number: 10316090
    Abstract: The disclosure provides a method for immunotherapy of a subject afflicted with cancer, comprises administering to the subject a composition comprising a therapeutically effective amount of an antibody that inhibits signaling from the PD-1/PD-L1 signaling pathway. This disclosure also provides a method for immunotherapy of a subject afflicted with cancer comprising selecting a subject that is a suitable candidate for immunotherapy based on an assessment that the proportion of cells in a test tissue sample from the subject that express PD-L1 on the cell surface exceeds a predetermined threshold level, and administering a therapeutically effective amount of an anti-PD-1 antibody to the selected subject. The invention additionally provides rabbit mAbs that bind specifically to a cell surface-expressed PD-L1 antigen in a FFPE tissue sample, and an automated IHC method for assessing cell surface expression in FFPE tissues using the provided anti-PD-L1 Abs.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: June 11, 2019
    Assignee: Bristol-Myers Squibb Company
    Inventors: John P. Cogswell, Stacie M. Goldberg, Ashok K. Gupta, Maria Jure-Kunkel, Xi-Tao Wang, Jon M. Wigginton
  • Patent number: 10308714
    Abstract: The disclosure provides a method for immunotherapy of a subject afflicted with cancer, comprises administering to the subject a composition comprising a therapeutically effective amount of an antibody that inhibits signaling from the PD-1/PD-L1 signaling pathway. This disclosure also provides a method for immunotherapy of a subject afflicted with cancer comprising selecting a subject that is a suitable candidate for immunotherapy based on an assessment that the proportion of cells in a test tissue sample from the subject that express PD-L1 on the cell surface exceeds a predetermined threshold level, and administering a therapeutically effective amount of an anti-PD-1 antibody to the selected subject. The invention additionally provides rabbit mAbs that bind specifically to a cell surface-expressed PD-L1 antigen in a FFPE tissue sample, and an automated IHC method for assessing cell surface expression in FFPE tissues using the provided anti-PD-L1 Abs.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 4, 2019
    Assignee: Bristol-Myers Squibb Company
    Inventors: John P. Cogswell, Stacie M. Goldberg, Ashok K. Gupta, Maria Jure-Kunkel, Xi-Tao Wang, Jon M. Wigginton
  • Patent number: 10308702
    Abstract: The present invention provides nucleic acids encoding B7-related factors that modulate the activation of immune or inflammatory response cells, such as T-cells. Also provided are expression vectors and fusion constructs comprising nucleic acids encoding B7-related polypeptides, including BSL1, BSL2, and BSL3. The present invention further provides isolated B7-related polypeptides, isolated fusion proteins comprising B7-related polypeptides, and antibodies that are specifically reactive with B7-related polypeptides, or portions thereof. In addition, the present invention provides assays utilizing B7-related nucleic acids, polypeptides, or peptides. The present invention further provides compositions of B7-related nucleic acids, polypeptides, fusion proteins, or antibodies that are useful for the immunomodulation of a human or animal subject.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: June 4, 2019
    Assignee: Bristol-Myers Squibb Comapny
    Inventors: Glen Eugene Mikesell, Han Chang, Robert James Peach
  • Patent number: 10280209
    Abstract: The present disclosure relates to a method for the treatment of a non-pathogen associated inflammatory disorders in a subject in need thereof, comprising administering to said subject an isolated peptide which specifically binds to an amino acid sequence within the dimer interface of a T cell costimulatory pathway member, particularly the T cell costimulatory pathway members CD28 and CTLA4. The present disclosure also relates to pharmaceutical compositions comprising the isolated peptide and to use of the peptide in treating of a non-pathogen associated inflammatory disorders.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: May 7, 2019
    Assignees: ATOX BIO LTD., YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD
    Inventors: Raymond Kaempfer, Anat Shirvan, Gila Arad
  • Patent number: 10280228
    Abstract: The present invention concerns dosages for treatment of human cancer patients with an anti-Epidermal Growth Factor Receptor (EGFR) antibody.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: May 7, 2019
    Assignee: Genentech, Inc.
    Inventors: Sharon A. Baughman, Steven Shak