Patents Examined by In Suk C Bullock
  • Patent number: 11958804
    Abstract: The present invention relates to the use of 2,5-furanedicarboxylate-based MOFs, such as, MIL-160(AI) metal-organic framework, for separating C6 alkane isomers into linear, mono-branched and di-branched isomers. The present invention also relates to the use of 2,5-furanedicarboxylate-based MOFs, such as, MIL-160(AI) metal-organic framework, preferably in combination with Zeolite 5A for producing higher research octane number gasoline blends. Also within the scope of the invention is a system for separating C6 and C5 alkane isomer mixtures into linear, mono-branched and di-branched fractions.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: April 16, 2024
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, INSTITUTO POLITÉCNICO DE BRAGANÇA, ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS, ÉCOLE NORMALE SUPÉRIEURE DE PARIS, UNIVERSIDADE DO PORTO
    Inventors: Christian Serre, Farid Nouar, José Silva, Alírio Rodrigues, Pedro Brântuas
  • Patent number: 11959031
    Abstract: An integrated process and associated system for conversion of crude oil to value added petrochemicals. The process includes separating crude oil into light and heavy crude fractions and processing the heavy fraction in a solvent deasphalting unit and a delayed coker unit, and then providing the light fraction and selected effluents of the solvent deasphalting unit and the delayed coker unit to a hydrotreater. The process further includes separating the effluent of the hydrotreater to generate a C1 fraction passed to a methane cracker, a C2 fraction passed to an ethane steam cracker, a C3-C4 fraction passed to a dehydrogenation reactor, a hydrotreated light fraction passed to an aromatization unit, and a hydrotreated heavy fraction passed to a steam enhanced catalytic cracking unit. The process further includes separating effluents of the various unit operations into product streams including a BTX stream and a light olefin stream.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: April 16, 2024
    Assignee: Saudi Arabian Oil Company
    Inventors: Aaron Chi Akah, Essa Alnaimi, Qi Xu, Musaed Salem Al-Ghrami
  • Patent number: 11951461
    Abstract: A solid acid catalyst has a macropore specific volume of about 0.30-0.50 ml/g, a ratio of macropore specific volume to specific length of catalyst particles of about 1.0-2.5 ml/(g·mm), and a ratio of specific surface area to length of catalyst particles of about 3.40-4.50 m2/mm. The macropore refers to pores having a diameter of more than 50 nm. An alkylation catalyst is based on the solid acid catalyst and can be used in alkylation reactions. The solid acid catalyst and alkylation catalyst show an improved catalyst service life and/or trimethylpentane selectivity when used in the alkylation of isoparaffins with olefins.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: April 9, 2024
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yongxiang Li, Xuhong Mu, Chengxi Zhang, Hexin Hu, Qiang Fu, Xingtian Shu
  • Patent number: 11951458
    Abstract: Bulk catalysts comprised of nickel, molybdenum, tungsten and titanium and methods for synthesizing bulk catalysts are provided. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: June 29, 2023
    Date of Patent: April 9, 2024
    Assignee: Chevron U.S.A. Inc.
    Inventors: Xiaoying Ouyang, Viorel Duma, Alexander Kuperman, Ibrahim Uckung, Theodorus Ludovicus Michael Maesen, Axel Brait, Charles Wilson
  • Patent number: 11951455
    Abstract: A process for dehydrogenating alkane or alkylaromatic compounds comprising contacting the given compound and a dehydrogenation catalyst in a fluidized bed. The dehydrogenation catalyst is prepared from an at least partially deactivated platinum/gallium catalyst on an alumina-based support that is reconstituted by impregnating it with a platinum salt solution, then calcining it at a temperature from 400° C. to 1000° C., under conditions such that it has a platinum content ranging from 1 to 500 ppm, based on weight of catalyst; a gallium content ranging from 0.2 to 2.0 wt %; and a platinum to gallium ratio ranging from 1:20,000 to 1:4. It also has a Pt retention that is equal to or greater than that of a fresh catalyst being used in a same or similar catalytic process.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: April 9, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Lin Luo, Devon C. Rosenfeld, Andrzej M. Malek
  • Patent number: 11951456
    Abstract: A process for preparing a catalyst for the hydrogenation of aromatic or polyaromatic compounds comprising nickel, copper and a support comprising at least one refractory oxide, comprising the following steps: bringing the support into contact with a solution containing at least one copper precursor and one nickel precursor; drying the catalyst precursor at a temperature of less than 250° C.; reducing the catalyst precursor by bringing said precursor into contact with a reducing gas at a temperature of between 150° C. and 250° C.; bringing the catalyst precursor into contact with a solution comprising a nickel precursor; a step of drying the catalyst precursor at a temperature of less than 250° C.; reducing the catalyst precursor by bringing said precursor into contact with a reducing gas at a temperature of between 150° C. and 250° C.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: April 9, 2024
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Malika Boualleg, Anne-Agathe Quoineaud
  • Patent number: 11952340
    Abstract: The present invention provides a two-stage process for removing polyunsaturated hydrocarbons from C4 hydrocarbon streams that, in addition to C4 hydrocarbons, also contain C5 hydrocarbons and mercaptans and/or disulfides.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: April 9, 2024
    Assignee: Evonik Oxeno GmbH & Co. KG
    Inventors: Stephan Peitz, Guido Stochniol, Markus Winterberg, Jörg Schallenberg, Armin Matthias Rix, Andreas Wolff
  • Patent number: 11952539
    Abstract: The present invention provides a process for producing liquid hydrocarbon products from solid biomass and/or residual waste feedstocks.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: April 9, 2024
    Assignee: SHELL USA, INC.
    Inventors: Vikrant Nanasaheb Urade, Alan Anthony Del Paggio, Madhusudhan Rao Panchagnula, Laxmi Narasimhan Chilkoor Soundararajan, Srikant Gopal
  • Patent number: 11951463
    Abstract: Catalyst compositions comprising a zeolite and a mesoporous support or binder are disclosed. The mesoporous support or binder comprises a mesoporous metal oxide having a particle diameter of greater than or equal to 20 ?m at 50% of the cumulative pore size distribution (d50). Also disclosed are processes for producing a mono-alkylated aromatic compound (e.g., ethylbenzene or cumene) which exhibit improved yield of the mono-alkylated aromatic compound using alkylation catalysts comprising one or more of these catalyst compositions.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: April 9, 2024
    Assignee: ExxonMobil Engineering & Technology Company
    Inventors: Matthew S. Ide, Brett T. Loveless, Doron Levin, William W. Lonergan, Matthew J. Vincent, Wei-Ping Tai, Federico Barrai
  • Patent number: 11939289
    Abstract: The selective dimerization of isoolefins, such as isobutene or isopentane, or mixtures thereof, may be conducted in a system including a series of fixed bed reactors and a catalytic distillation reactor. The system may provide for conveyance of the fixed bed reactor effluents, without componential separation, to a downstream reactor. It has been found that a high selectivity to the dimer may be achieved even though intermediate separation of the desired product from unreacted components between reactors is not performed. Further, embodiments provide for use of a divided wall column for recovery of a high purity dimer product, reducing unit piece count and plot size.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: March 26, 2024
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Rosette Barias, Liang Chen, Michael Jon Scott
  • Patent number: 11939540
    Abstract: Processes for producing olefins include integration of steam cracking with a dual catalyst metathesis process. The processes include steam cracking a hydrocarbon feed to form a cracking reaction effluent containing butenes, separating the cracking reaction effluent to produce a cracking C4 effluent including normal butenes, isobutene, and 1,3-butadiene, subjecting the cracking C4 effluent to selective hydrogenation to convert 1,3-butadiene in the cracking C4 effluent to normal butenes, removing isobutene from a hydrogenation effluent to produce a metathesis feed containing normal butenes, and contacting the metathesis feed with a metathesis catalyst and a cracking catalyst directly downstream of the metathesis catalyst to produce a metathesis reaction effluent.
    Type: Grant
    Filed: January 3, 2023
    Date of Patent: March 26, 2024
    Assignee: Saudi Arabian Oil Company
    Inventors: Sohel K Shaikh, Raed H Abudawoud, Zhonglin Zhang, Munir D Khokhar, Furqan Aljumah
  • Patent number: 11939527
    Abstract: Provided in one embodiment is a continuous process for converting waste plastic into recycle for polyethylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a pyrolysis oil and optionally pyrolysis wax comprising a naphtha/diesel fraction and heavy fraction, and char. The pyrolysis oil and wax is passed to a refinery FCC feed pretreater unit. A heavy fraction is recovered and sent to a refinery FCC unit, from which a C3 olefin/paraffin mixture fraction is recovered, which is passed to a steam cracker for ethylene production. In another embodiment, a propane fraction (C3) is recovered from a propane/propylene splitter and passed to the steam cracker.
    Type: Grant
    Filed: October 30, 2022
    Date of Patent: March 26, 2024
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Cameron McCord
  • Patent number: 11932597
    Abstract: A process for converting isobutane to propylene. The process including dehydrogenating isobutane to produce a mixed product stream comprising isobutane and isobutene, skeletal isomerizing the mixed product stream comprising isobutane and isobutene to convert isobutene to n-butenes including 1-butene and 2-butenes and to recover a skeletal isomerization reaction product comprising isobutane, isobutene, butadiene, 1-butene, and 2-butenes. The process further including fractionating the skeletal isomerization reaction product, isomerizing the 1-butene contained therein to 2-butenes, recovering an overhead fraction comprising isobutane, a side draw fraction comprising isobutane and isobutene, and a bottoms fraction comprising 2-butenes, and combining the bottoms fraction with ethylene and converting the ethylene and 2-butenes to produce a reaction effluent comprising propylene.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: March 19, 2024
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Martinus J. Almering, Kerman N. Dukandar, Oliver Chen
  • Patent number: 11926798
    Abstract: The present disclosure generally relates to the utilization of a fine mineral matter in the process of upgrading the liquid products obtained by thermolysis or pyrolysis of solid plastic waste or biomass or from cracking, coking or visbreaking of petroleum feedstocks. More particularly, the present disclosure is directed to a process of stabilization of the free-radical intermediates formed during thermal or catalytic cracking of hydrocarbon feedstocks including plastic waste and on a process of catalytic in-situ heavy oil upgrading. The fine mineral matter may be derived from natural sources or from synthetic sources.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: March 12, 2024
    Assignee: Radical Plastics Inc.
    Inventor: Yelena Kann
  • Patent number: 11919832
    Abstract: Disclosed is a dissimilar metal-supported catalyst for the production of aromatics by methane dehydroaromatization. In the dissimilar metal-supported catalyst, a noble metal such as gold (Au), silver (Ag), platinum (Pt), and/or rhodium (Rh) is introduced into a catalyst supported with iron (Fe) on a zeolite support to promote the dehydrogenation of methane and the formation of iron carbide (Fe3C) as an active species for dehydroaromatization, achieving a greatly improved yield of aromatics. Also disclosed is a method for producing aromatics using the dissimilar metal-supported catalyst.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: March 5, 2024
    Assignees: Korea University Research and Business Foundation, SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Kwan-Young Lee, Do Heui Kim, Jae Ik Sim, Byung Jin Lee
  • Patent number: 11920078
    Abstract: A process for producing olefins may include dehydrogenating a first alkane in a first reactor to produce a first effluent comprising at least one of a first n-olefin or a first diolefin; removing the first effluent from the first reactor; and regenerating the first reactor. The first reactor may include a first dehydrogenation catalyst and a first phase change material.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: March 5, 2024
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventor: Gary George Podrebarac
  • Patent number: 11920094
    Abstract: The invention provides a method for pretreating a hydrocarbon steam cracker feed, comprising contacting the feed with a solvent to produce a pretreated feed having a reduced content of fouling components that cause fouling in the preheat, convection and radiant sections of the steam cracker and a rich solvent having an increased content of fouling components. The invention further provides a method for steam cracking hydrocarbons comprising: a) feeding a hydrocarbon steam cracker feed to the process; b) pretreating the feed by contacting the feed with a solvent to produce a pretreated feed having a reduced content of fouling components that cause fouling in the steam cracker and a rich solvent having an increased content of fouling components; c) heating the pretreated feed; and d) passing the pretreated feed through a steam cracker under cracking conditions to produce cracked products.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: March 5, 2024
    Assignee: SHELL USA, INC.
    Inventor: Willem Derks
  • Patent number: 11912655
    Abstract: Processes and systems for upgrading natural gas liquids. At least a portion of the natural gas liquid components in a shale gas stream can be dehydrogenated to their corresponding olefin derivatives prior to separating any methane from the liquids. Further processing subsequent to dehydrogenation could include various separations, oligomerizing olefins produced in the dehydrogenation step, recovering desired products, etc. The order of the processing steps subsequent to dehydrogenation could be adjusted in various cases.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: February 27, 2024
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Rakesh Agrawal, Yiru Li
  • Patent number: 11905227
    Abstract: A process for olefin oligomerization can include contacting a feedstock comprising Cn and C2n olefins/paraffins under oligomerization conditions in the presence of an oligomerization catalyst, wherein n is 2 to 15; and recovering an oligomeric product comprising C3n oligomers having a branching index of less than 2.1. Optionally, the feedstock can further comprise C3n olefins/paraffins.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 20, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shiwen Li, Alan A. Galuska, Teng Xu
  • Patent number: 11898107
    Abstract: According to one or more embodiments described herein, a method for processing a hydrocarbon feedstock may include contacting the hydrocarbon feedstock and a product emulsion with supercritical carbon dioxide in a supercritical carbon dioxide extraction unit to form at least an extract emulsion and a pitch emulsion; contacting at least a portion of the pitch emulsion with supercritical water in a supercritical water gasification unit to form a gasified product; separating the gasified product into at least a product gas and the product emulsion, the product emulsion comprising water and one or more hydrocarbons; and recycling at least a portion of the product emulsion to the supercritical carbon dioxide extraction unit. Contacting the product emulsion with the supercritical carbon dioxide may break at least a portion of the product emulsion.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: February 13, 2024
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Joo-Hyeong Lee, Mohammed Saad Aldossary, Ali Mahmoud Al-Somali