Patents Examined by Isam Alsomiri
  • Patent number: 10730073
    Abstract: A circuit for an ultrasonic channel has a first and a second terminal between which extend a resistive and diode signal paths including a pair of diodes with opposing polarities, for example in anti-parallel. Switching circuitry is coupled with the resistive and diode signal paths and is switchable between first and second states. In the first state, the first and the second terminals are coupled with one another via the resistive signal path. In the second state, the first and the second terminals are coupled with one another via the diode signal path. The switching circuitry includes first and second transistor discharge circuits coupled between first and second drive lines and current paths of these transistors, and coupled to control terminals of these transistors. The control terminals are coupled to the first or second drive line and are non-conductive and conductive in first and second operating states, respectively.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 4, 2020
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Davide Ugo Ghisu, Sandro Rossi, Andrea Gambero
  • Patent number: 10725156
    Abstract: A method includes generating a first optical signal containing doublet pulses. Each doublet pulse includes a first pulse and a second pulse. The second pulses of the doublet pulses are in quadrature with the first pulses of the doublet pulses. The method also includes transmitting the first optical signal towards a target and receiving a second optical signal containing reflected doublet pulses from the target. Each reflected doublet pulse includes a first reflected pulse and a second reflected pulse. The method further includes performing in-phase and quadrature processing of the first and second reflected pulses and identifying one or more parameters of the target based on the in-phase and quadrature processing.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: July 28, 2020
    Assignee: Raytheon Company
    Inventors: Maurice J. Halmos, Joseph Marron, Jae H. Kyung
  • Patent number: 10712431
    Abstract: A LIDAR apparatus can include a polygon deflector that includes a plurality of facets. The LIDAR apparatus can include a motor rotatably coupled to the polygon deflector. The motor is configured to rotate the polygon deflector about a first axis orthogonal to a first plane. The LIDAR apparatus can include an optic positioned within an interior of the polygon deflector. The optic collimates a first beam to be incident on a particular facet of the plurality of facet. The particular facet of the plurality of facets refracts the first beam in the first plane between a first angle and a second angle as the polygon deflector rotates about the first axis to output a second beam.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: July 14, 2020
    Assignee: BLACKMORE SENSORS & ANALYTICS, LLC
    Inventors: Edward Joseph Angus, Ryan Moore Galloway
  • Patent number: 10705190
    Abstract: A lidar device comprises: a laser emitting unit for including a plurality of VCSEL elements emitting a laser beam; a metasurface for including a plurality of beam steering cells arranged in a form of two-dimensional array by a row direction and a column direction, wherein the plurality of beam steering cells guide the laser beam by using nanopillars; wherein the nanopillars included in the plurality of beam steering cells form a subwavelength pattern, wherein the increase of an attribute related to at least one of the width, height, and number per unit length of the nanopillars is repetitive along the direction from the center of the metasurface to the position of the row corresponding to the plurality of beam steering cells.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: July 7, 2020
    Assignee: SOS LAB CO., LTD
    Inventors: Jun Hwan Jang, Hee Sun Yoon
  • Patent number: 10705219
    Abstract: The present application discloses a method and apparatus for updating a map. An implementation of the method comprises: acquiring a laser point clouds obtained by scanning a surrounding environment and acquiring a periodic pose change of a vehicle in a scanning period; determining an a priori pose of the laser radar at a reference time in the current scanning period based on a known pose of the laser radar in a previous scanning period and the periodic pose change; performing motion compensation on the scanned laser point clouds to form a compensated point cloud frame; generating a partial point cloud characteristic map; matching the partial point cloud characteristic map with a map area obtained in a reference point cloud map, and correcting the a priori pose to obtain an a posteriori pose; and updating a three-dimensional point cloud map of a to-be-constructed area using the compensated point cloud frame.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: July 7, 2020
    Assignee: BAIDU ONLINE NETWORK TECHNOLOGY (BEIJNG) CO., LTD
    Inventors: Shichun Yi, Cheng Wang, Li Yu, Shiyu Song, Baoqiang Xu
  • Patent number: 10705195
    Abstract: A distance measuring apparatus measures a distance to a target from a plurality of directions, and includes sensors having identical two-dimensional scan type configurations that launch a laser beam and receive reflected light from the target by a multi-segment light receiving element, and a processor. The processor performs a process including specifying a receiving part of the multi-segment light receiving element of a first sensor, that receives a second laser beam launched from a second sensor in a state in which the target is non-detectable by the first sensor, adjusting a phase in a vertical scan direction of the second laser beam with respect to that of a first laser beam launched from the first sensor, until the receiving part no longer receives the second laser beam, and integrating range images from the first and second sensors after the phase is adjusted.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: July 7, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Takeshi Morikawa, Koichi Tezuka, Koichi Iida
  • Patent number: 10705218
    Abstract: An object position detection apparatus 1 includes a distance image generation unit 10 which generates a two-dimensional distance image by measuring a distance to a subject including an object on the basis of a light transmission time, an object image generation unit 16 which generates an object image in which the object is extracted from the distance image of the subject, and an installation angle detection unit 20 which detects an installation angle of the distance image generation unit 10. The object image generation unit 16 includes a differentiator 17 which performs a process of removing a background other than the object from the distance image of the subject and a threshold value d for removing the background in the differentiator 17 is set in response to the installation angle of the distance image generation unit 10 detected by the installation angle detection unit 20.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: July 7, 2020
    Assignee: HITACHI-LG DATA STORAGE, INC.
    Inventor: Kozo Masuda
  • Patent number: 10690754
    Abstract: A scanning lidar system includes a fixed frame, a first platform flexibly attached to the fixed frame, a lens assembly including a first lens and a second lens mounted on the first platform, a second platform flexible attached to the fixed frame, an electro-optic assembly including a first laser source and a first photodetector mounted on the second platform, a drive mechanism mechanically coupled to the first platform and the second platform and configured to translate the first platform and the second platform with respect to the fixed frame, and a controller coupled to the drive mechanism and configured to translate the first platform to a plurality of first positions through the drive mechanism and translate the second platform to a plurality of second positions through the drive mechanism such that a motion of the second platform is substantially opposite to a motion of the first platform.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: June 23, 2020
    Assignee: Cepton Technologies, Inc.
    Inventors: Jun Pei, Mark McCord, Jun Ye, Yupeng Cui, Liqun Han
  • Patent number: 10684360
    Abstract: A lidar system includes a light source configured to emit pulses of light, a scanner configured to direct the pulses of light along a scan direction, and a receiver with a detector configured to detect the pulses of light scattered by remote targets. For a pulse of light emitted by the light source, the receiver is configured to detect the scattered pulse of light returning to the receiver during a ranging time interval between (i) when the pulse of light leaves the lidar system and (ii) when the scattered pulse of light returns from a remote target positioned at a maximum distance RMAX. For at least a portion of the ranging time interval, the lidar system directs the scattered pulse of light toward the active region of the detector at an oblique angle to reduce an amount of light impinging on the active region.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: June 16, 2020
    Assignee: Luminar Technologies, Inc.
    Inventor: Scott R. Campbell
  • Patent number: 10682671
    Abstract: There are provided an ultrasonic imaging apparatus, an ultrasonic probe apparatus, a signal processing apparatus, and a method for controlling an ultrasonic imaging apparatus. The ultrasonic imaging apparatus may include at least one first ultrasound element installed in a first ultrasound element installation unit; at least one second ultrasound element installed in a second ultrasound element installation unit that is separate from the first ultrasound element installation unit and such that the second ultrasound element forms a gap with the first ultrasound element; and a processor configured to estimate one or two or more virtual ultrasound signals that correspond to the gap based on a first ultrasound signal output from the at least one first ultrasound element and a second ultrasound signal output from the at least one second ultrasound element.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: June 16, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Baehyung Kim, Kyuhong Kim, Suhyun Park
  • Patent number: 10677922
    Abstract: A time-of-flight (TOF) sensor device is provided with features for correcting distance measurement offset errors caused by such factors as temperature, dynamic reflectivity ranges of objects in the viewing space, or other factors. In various embodiments, the TOF sensor device generates corrected distance values based on comparison of two different distance values measured for an object by two different measurement techniques, including but not limited to phase shift measurement, pulsed TOF measurement, distance measurement based on the focal length of the TOF sensor's lens, and comparison of distance variations with light intensity variations. In addition, some embodiments of the TOF sensor device perform self-calibration using internal waveguides or parasitic reflections as distance references.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: June 9, 2020
    Assignee: Rockwell Automotive Safety AG
    Inventors: Carl Meinherz, Martin Hardegger, Manfred Stein, Danilo Dorizzi
  • Patent number: 10663322
    Abstract: A distance measuring device comprises a motor (120), a control box (130) and a code disc (150). Relative rotation occurs between the control box (130) and the code disc (150) driven by the motor. A point position tooth (151A) is comprised on the code disc (150). The control box (130) comprises a distance measuring unit (142), a detection part (144) and a control unit (140). The detection part (144) comprises a light emitter (1440) and a light receiver (1441) which are correspondingly arranged. The control box (130) is rotated relative to the code disc (150), so that the point position tooth (151A) passes through a corresponding position between the light emitter (1440) and the light receiver (1441); the control unit (140) receives the signal output of the light receiver (1441), judges the information on alignment status of the point position tooth (151A) with the corresponding position, and sends a start or stop operation instruction to the distance measuring unit (142) on the basis of the status information.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: May 26, 2020
    Assignee: ECOVACS ROBOTICS CO., LTD.
    Inventor: Jinju Tang
  • Patent number: 10663565
    Abstract: A time of flight sensor device is provided that is capable of generating accurate information relating to propagation time of emitted light pulses using a small number of measurements or data captures. By generating pulse time of flight information using a relatively small number of measurement cycles, object distance information can be generated more quickly, resulting in faster sensor response times. Embodiments of the time of flight sensor can also minimize or eliminate the adverse effects of ambient light on time of flight measurement. Moreover, some embodiments execute time of flight measurement techniques that can achieve high measurement precision even when using relatively long light pulses having irregular, non-rectangular shapes.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: May 26, 2020
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Frederic Boutaud, Mei Li
  • Patent number: 10663593
    Abstract: In an aspect of the invention, a projector apparatus (20) with a distance image acquisition device includes a projection image generation unit (28), a difference value acquisition unit (101) that acquires a difference value between distance information of a first distance image acquired at a first timing and distance information of a second distance image acquired at a second timing, a determination unit (103) that determines whether the body to be projected is at a standstill on the basis of the difference value acquired by the difference value acquisition unit (101), a projection instruction unit (105) that outputs a command to project an image generated by the projection image generation unit (28) to the body to be projected, and a projection control unit (107) that controls a projection operation of the projector apparatus (20) on the basis of the projection command output from the projection instruction unit (105).
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 26, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Junya Kitagawa, Tomoyuki Kawai, Yasuhiro Shinkai, Tomonori Masuda, Yoshinori Furuta
  • Patent number: 10648795
    Abstract: A distance measuring apparatus measures a distance to a target based on reflected light in response to launched laser beam. A distance measuring process includes generating a difference binary image from first and second range images that are respectively generated in states without and with the target in front of a background and represent distances to each of range measurement points, extracting a first region greater than a first threshold from a non-background region of the difference binary image made up of non-background points, grouping adjacent points on the second range image into groups of adjacent points having close distance values, for each point within the first region, to extract second regions corresponding to the groups, and extracting a third region smaller than a second threshold from the second regions, to judge that each point within the third region is edge noise.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: May 12, 2020
    Assignee: FUJITSU LIMITED
    Inventor: Satoru Ushijima
  • Patent number: 10641896
    Abstract: A distance measurement device includes a deriving unit that derives a dimension of a real-space region corresponding to an interval between a plurality of pixels associated with in-image irradiation positions derived as positions, which correspond to irradiation positions of laser beams onto a subject, within a captured image acquired by imaging the subject by an imaging unit, based on a distance measured by a measurement unit, an interval between a plurality of designated pixels, and a focal length of the imaging unit, and an output unit that derives derivation accuracy corresponding to an actually present factor based on a first correspondence relation between assumption factors assumed as factors influencing in-image irradiation positions and derivation accuracy derived by the deriving unit, and outputs information based on the derived derivation accuracy.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: May 5, 2020
    Assignee: FUJIFILM CORPORATION
    Inventor: Masahiko Sugimoto
  • Patent number: 10641874
    Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: May 5, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Scott R. Campbell, Lane A. Martin, Matthew D. Weed, Jason M. Eichenholz
  • Patent number: 10634792
    Abstract: A control device includes a communication unit, a storage, and a position estimator. The position estimator updates a position of the first wireless communication device by using a difference between first reception quality and third reception quality and a difference between second reception quality and fourth reception quality. A first response signal includes at least the first reception quality calculated when a first control signal is received by the first wireless communication device and the second reception quality of a second response signal calculated when the second response signal is received by the first wireless communication device, and a third response signal includes at least the third reception quality of a third control signal and the fourth reception quality of a fourth response signal calculated when the fourth response signal is received by the first wireless communication device.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 28, 2020
    Assignee: Panasonic Intellctual Property Corporation of America
    Inventors: Junichi Morita, Naganori Shirakata, Hiroshi Takahashi, Kazuma Nishiyasu
  • Patent number: 10627540
    Abstract: Techniques are disclosed relating to control of seismic sources such as marine vibrators. According to some embodiments, iterative learning control (ILC) systems may be used to control such seismic sources. According to some embodiments, local sensor(s) placed in, on, or near a seismic source and/or remote sensors placed in the far-field region may be used to determine a transfer function for the seismic source for such ILC control.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: April 21, 2020
    Assignee: PGS Geophysical AS
    Inventors: Stig Rune Lennart Tenghamn, Bo Magnus Bernhardsson, Nils Gunnar Olof Kröling, Per Birger Gunnarsson
  • Patent number: 10627496
    Abstract: System, methods, and other embodiments described herein relate to a photonic apparatus including integrated phase measurement. The photonic apparatus includes a phase shifter operably connected with a source optical waveguide to receive a source light wave and to shift a source phase of the source light wave to produce a shifted light wave with a shifted phase that is different from the source phase. The photonic apparatus includes an output optical waveguide connected with the phase shifter to provide the shifted wave and a reference optical waveguide operably connected with the source optical waveguide to provide the source light wave. The photonic apparatus includes a combiner to combine the shifted light wave with the source light wave to produce a combined light wave. The photonic apparatus includes a detector to determine a difference in phases between the shifted phase and the source phase as embodied in the combined wave.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: April 21, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Paul Donald Schmalenberg, Tsuyoshi Nomura, Jae Seung Lee