Patents Examined by Ishrat Jamali
  • Patent number: 9768696
    Abstract: A high voltage/ultrahigh voltage direct current transmission inverter side frequency control implementing method includes: transmitting a deviation between the inverter side power grid frequency and rated frequency to the inverter side frequency controller, wherein the frequency controller regulates and outputs a modulation quantity by adopting self-adaptive parameters according to different operation conditions; when the interstation communication is normal, the modulation quantity output of the inverter side frequency controller causes the rectifier side and the inverter side to form a new power/current order through the interstation communication; when the interstation communication is abnormal, converting the inverter side to current control from voltage control and converting the rectifier side to voltage control from current control; superposing the modulation quantity output of the inverter side frequency controller to the power/current order of the inverter side, changing the size of the transmission
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: September 19, 2017
    Assignees: NR Electric Co., Ltd., NR Electric Engineering Co., Ltd.
    Inventors: Wenqiang Zhao, Lin Li, Yongping Wang
  • Patent number: 9755546
    Abstract: A neutral point clamped, multilevel level converter includes a DC voltage link; a first capacitor coupling one side of the DC link to a neutral point; a second capacitor coupling another side of the DC link to the neutral point; a plurality of phase legs, each phase leg including switches, each phase leg coupled to an AC node; a current sensor associated with each AC node; and a controller generating a PWM signal to control the switches, the controller generating a current zero sequence component in response to current sensed at each of the current sensors, the controller adjusting a modulation index signal in response to the current zero sequence component to produce the PWM signal.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: September 5, 2017
    Assignee: OTIS ELECATOR COMPANY
    Inventors: Luis Arnedo, Marinko Kovacic, Yang Wang, Shashank Krishnamurthy
  • Patent number: 9748852
    Abstract: An electrical circuit for providing electrical power for use in powering electronic devices, such as monitors, televisions, white goods, data centers, and telecom circuit boards, is described herein. The electrical circuit includes an input terminal configured to receive an input power signal, an output terminal configured to provide an output power signal, and a plurality of voltage reduction circuit cells coupled between the input terminal and the output terminal. Each of the voltage reduction circuit cells includes a pair of flyback capacitors, a switching circuit, and a hold capacitor. The switching device is configured to operate the corresponding voltage reduction circuit cell at a charging phase and at a discharging phase. The plurality of voltage reduction circuit cells are configured to deliver the output power signal having a voltage level that is less than the voltage level of the input power signal.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: August 29, 2017
    Assignee: Advanced Charging Technologies, LLC
    Inventors: Michael H. Freeman, W. J. Weaver, Jr., Mitchael C. Freeman, Robert Dieter, Andrea Baschirotto, Piero Malcovati, Marco Grassi, Glenn Noufer, Randall L. Sandusky, Neaz Farooqi, Jim Devoy, Silvia Jaeckel, Madison Hayes Yarbro Freeman
  • Patent number: 9739806
    Abstract: In one embodiment, a method of detecting a voltage can include: (i) generating a first current according to a first voltage and a converting resistor; (ii) charging a detection capacitor by the first current during a first time period of a switching cycle of a switching power supply; (iii) charging the detection capacitor by a second current during a second time period of the switching cycle; (iv) detecting a voltage across the detection capacitor to obtain a detection voltage at an end time of the second time period, where the first time period includes a rising portion of a current flowing through the inductor, and the second time period includes a decreasing portion of the inductor current; and (v) determining a state of a present output voltage of the switching power supply according to the detection voltage.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 22, 2017
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventor: Yunlong Han
  • Patent number: 9740231
    Abstract: An internal voltage generation circuit includes a first control signal generation unit suitable for generating a first control signal activated to a level of a second external voltage when a first external voltage is activated, a second control signal generation unit suitable for generating a second control signal that equals the higher of the second external voltage and an internal voltage, and a voltage generation unit suitable for generating the internal voltage by performing a charge pumping operation based on the second external voltage and an oscillation signal while blocking a current flowing through a generation node from which the internal voltage is generated, based on the first and second control signals.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: August 22, 2017
    Assignee: SK Hynix Inc.
    Inventor: Yeon-Uk Kim
  • Patent number: 9729045
    Abstract: Power converter includes a switched power stage to generate an output voltage from an input voltage, and a controller to generate a pulse width modulation (PWM) signal for switching the switched power stage in dependence upon a voltage error signal. The voltage error signal is a difference between a reference voltage and the output voltage. The controller comprises a synchronizer to generate a first clock signal for clocking a low frequency domain of the controller, and a digital PWM controller clocked by the first clock signal and configured to determine an on-time information of the PWM signal and a PWM generator to generate the PWM signal based on the on-time information. The synchronizer is configured to synchronize a frequency of the PWM signal to a frequency imposed by the external reference signal by synchronizing a frequency of the first clock signal to the frequency imposed by the external reference signal.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: August 8, 2017
    Inventors: Marco Meola, Christian Glassner, Frank Trautmann
  • Patent number: 9729055
    Abstract: Systems and methods of increasing power converter efficiency are provided. A power converter includes a boost circuit configured to receive a DC input voltage ranging from a minimum input voltage value to a maximum voltage value, boost the DC input voltage to a predefined nominal voltage value when the DC input voltage has a value between the minimum input voltage value and the predefined nominal voltage value, and maintain the DC input voltage when the DC input voltage has a value that is greater than or equal to the predefined nominal voltage value and less than the maximum input voltage value. The unit also includes a DC-DC converter coupled to an output of the boost circuit, the DC-DC converter configured to convert the boosted DC voltage or the maintained DC voltage to a DC output voltage.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: August 8, 2017
    Assignee: General Electric Company
    Inventors: Guofei Yao, Qixue Yu, Xiaowei Ye, Steven Li
  • Patent number: 9722493
    Abstract: Power converters that can allow for the transfer of DC power between a ground-referenced bus and a floating system are provided. In one embodiment, the power converter includes a ground-referenced DC bus associated with a DC voltage. The power converter further includes a first switching element, a second switching element, and a third switching element coupled in series between the ground-referenced DC bus and a ground reference. The power converter further includes a floating system associated with a floating DC voltage. The floating system can include a first terminal coupled to a first node between the first switching element and the second switching element. The floating system can further include a second terminal coupled to a second node between the second switching element and the third switching element.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: August 1, 2017
    Assignee: General Electric Company
    Inventors: Bennett Steven Sheron, Lukas Mercer Hansen, Wayne Allen Schulz
  • Patent number: 9722496
    Abstract: In one embodiment, a method of compensating for transmission voltage loss from a switching power supply, can include: (i) receiving a sampling signal that represents an output current of the switching power supply; (ii) delaying the sampling signal to generate a delayed sampling signal; (iii) converting the delayed sampling signal to generate a compensation signal; and (iv) regulating an output voltage of the switching power supply based on the compensation signal to compensate for the transmission voltage loss from the output voltage transmission to a load such that a voltage at the load is maintained as substantially consistent with an expected voltage at the load.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: August 1, 2017
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Xiaoru Xu, Yunlong Han
  • Patent number: 9716426
    Abstract: A lamp oscillator which outputs a sawtooth wave signal to be compared with an error signal of an output voltage in order to generate a PWM signal. The oscillator includes a first charging current changing circuit, in which a current amplifier converts a differential voltage between the error signal and a reference voltage into a current and outputs the converted current. When the load of a switching power supply circuit is heavy, a capacitor is charged with a constant current and generates a sawtooth wave signal having a predetermined slope. During a light load, the first charging current changing circuit adds the current, which increases as the load becomes lighter, to the current to thereby make the slope of the sawtooth wave signal steeper.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 25, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Takato Sugawara
  • Patent number: 9712069
    Abstract: A transformer of distributed-constant type is provided between an AC power supply with a frequency f and a load with a resistance value R, and includes: a first converter connected to the AC power supply and having a length of ?/4; and a second converter provided between an end of the first converter and the load, and having a length of ?/4, where a wavelength at the frequency f is ?. Such a transformer has a small size and a light weight, and does not need a coil, an iron core, and the like as used in a conventional transformer.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: July 18, 2017
    Assignees: Sumitomo Electric Industries, Ltd., National University Corporation Toyohashi University of Technology
    Inventors: Hideaki Nakahata, Nobuo Shiga, Kenichi Hirotsu, Takashi Ohira, Kyohei Yamada
  • Patent number: 9712066
    Abstract: An apparatus includes a first auxiliary switch connected to a positive connection of a switching leg of a DC-to-DC converter. The switching leg includes a first main switch and a second main switch connected at a main switch midpoint. A second auxiliary switch is connected between a negative connection of the switching leg and the first auxiliary switch. A connection point between the first and second auxiliary switches is an auxiliary midpoint. An auxiliary inductor connects the auxiliary midpoint and the main switch midpoint. The main switch midpoint is also connected to other converter elements. The first and second main switches include a first capacitance a second capacitance. A switch regulation module regulates the first and second auxiliary switches to control current in the auxiliary inductor to provide or remove charge from the first and second capacitances to induce zero voltage switching for the first and second main switches.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: July 18, 2017
    Assignee: UTAH STATE UNIVERSITY
    Inventors: Regan A Zane, Daniel Seltzer, Dragan Maksimovic, Boris Jacobson, Donald Desrosiers
  • Patent number: 9705402
    Abstract: A power loss protection integrated circuit includes a current switch circuit (eFuse), a VIN terminal, a VOUT terminal, a buck/boost controller, and a storage capacitor terminal STR. The controller is adapted to work: 1) as a boost to take a low voltage from the VOUT terminal and to output a larger charging voltage onto the STR terminal, or 2) as a buck to take a higher voltage from the STR terminal and to buck it down to a lower voltage required on the VOUT terminal. The current switch circuit outputs a digital undervoltage signal (UV) and a digital high current signal (HC). These signals are communicated on-chip to the controller. Asserting UV causes the converter to begin operating in the buck mode. Asserting HC prevents the converter from operating in the boost mode.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 11, 2017
    Assignee: Active-Semi, Inc.
    Inventors: John H. Carpenter, Jr., Brett E. Smith, Hiroshi Watanabe
  • Patent number: 9698700
    Abstract: A power converter can be controlled to generate a target output power. The control process may include obtaining a target current reference for the power converter, sensing an output current of the power converter, and determining a difference between the target current reference and the sensed output current. The next switching duty cycle for the next switching period of the switching circuits in the power converter can be derived based on at least the present switching duty cycle of the present switching period, and the difference between the target current reference and the sensed output current. The switching circuits of the power converter can then be switched according to the derived next switching duty cycle in the next switching period.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: July 4, 2017
    Assignees: DRS Consolidated Controls, Inc., University of Connecticut
    Inventors: Scott Ramsay, Michael Kelley, Matthew Tarca, John Thompson, David Gellis, Thomas Parsons, Sung Yeul Park, Sungmin Park
  • Patent number: 9692296
    Abstract: Single-input-multiple-output (SIMO) DC-DC converters and SIMO DC-DC converter control circuits are disclosed. An example DC-DC converter control circuit includes a switch controller to control respective switches of a SIMO DC-DC voltage converter that has multiple output circuits. The example control circuit also includes an arbitration circuit that determines a first one of the output circuits to have priority over other ones of the output circuits based on a priority signal, and selects a first output circuit to be charged during a first time slot based on the priority signal and based on first kick signals indicating that the at least two output circuits are to be charged. The control circuit also includes a next kick detector that determines a second one of the output circuits to be charged during a second time slot after the first time slot based on the priority.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: June 27, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ranjit Kumar Dash, Keith Edmund Kunz
  • Patent number: 9680462
    Abstract: Various embodiments are described herein for methods and systems of regulating incoming voltage supplied from a utility power supply to a load. In one example embodiment, a voltage regulator adapted to be electrically interposed between the utility power supply and the load, each having at least one phase, is provided. The voltage regulator comprises an autotransformer having, for each phase, a series winding and a regulating winding, where the regulating winding has a plurality of taps and the series winding has a load side for connection to the load and a supply side for connection to the utility power supply.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: June 13, 2017
    Assignee: LEGEND POWER SYSTEMS INC.
    Inventors: Mark Petersen, Jonathan Stewart Thomson
  • Patent number: 9673717
    Abstract: An electrical circuit for providing electrical power for use in powering electronic devices, such as monitors, televisions, white goods, data centers, and telecom circuit boards, is described herein. The electrical circuit includes an input terminal configured to receive an input power signal, an output terminal configured to provide an output power signal, and a plurality of voltage reduction circuit cells coupled between the input terminal and the output terminal. Each of the voltage reduction circuit cells includes a pair of flyback capacitors, a switching circuit, and a hold capacitor. The switching device is configured to operate the corresponding voltage reduction circuit cell at a charging phase and at a discharging phase. The plurality of voltage reduction circuit cells are configured to deliver the output power signal having a voltage level that is less than the voltage level of the input power signal.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: June 6, 2017
    Assignee: ADVANCED CHARGING TECHNOLOGIES, LLC
    Inventors: Michael H. Freeman, W. J. “Jim” Weaver, Jr., Mitchael C. Freeman, Robert Dieter, Andrea Baschirotto, Piero Malcovati, Marco Grassi, Glenn Noufer, Randall L. Sandusky, Neaz E. Farooqi, Jim Devoy, Silvia Jaeckel, Madison Hayes Yarbro Freeman
  • Patent number: 9667155
    Abstract: A switching power supply includes: a transformer having a primary coil and a secondary coil; a switching element that is connected in series to the primary coil of the transformer so as to turn a direct-current input voltage applied to the primary coil of the transformer ON and OFF; a rectifying and smoothing circuit that rectifies a voltage induced in the secondary coil of the transformer to generate a direct-current output voltage; and a control circuit that turns the switching element ON and OFF in accordance with the direct-current output voltage, wherein the control circuit includes an input correction circuit that detects a switching period of the switching element and limits a peak value of a current flowing through the switching element in accordance with the detected switching period.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: May 30, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Naotaka Matsuda
  • Patent number: 9660541
    Abstract: A switching power supply device includes a switching control circuit that generates a switching control signal such that a desired output voltage is generated from an input voltage, a drive circuit that turns on/off an output transistor in accordance with the switching control signal, and an on-pulse stop circuit that generates a pulse stop signal such that the number of ON pulses of the switching control signal is reduced in a state where a load is heavier than a first threshold but is lighter than a second threshold.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: May 23, 2017
    Assignee: Rohm Co., Ltd.
    Inventor: Yoshinori Sato
  • Patent number: 9654028
    Abstract: A system and method for operating an inverter to maximize an overall efficiency of a power system is disclosed. A power system includes an inverter having an arrangement of switching devices that are selectively operable in On and Off states to invert a DC output to an AC output having controlled current and voltage. A controller selectively controls operation of the arrangement of switching devices via a discontinuous pulse width modulation (DPWM) scheme, so as to regulate an average voltage of the AC output. In controlling operation of the arrangement of switching devices via the DPWM scheme, the controller is programmed to generate a DPWM reference waveform having an initial phase angle, determine a system efficiency of the power system during operation, calculate an optimal phase angle for the DPWM reference waveform based on the determined system efficiency, and generate a DPWM reference waveform having the calculated optimal phase angle.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: May 16, 2017
    Assignee: Eaton Corporation
    Inventors: Cheng Luo, Huiting Xin, Xinyu Wang, Xiaxia Hu, Han Li