Patents Examined by Ivan Laboy
  • Patent number: 8687397
    Abstract: A method and device for operating a direct converter circuit are provided. A control signal controls power semiconductor switches of switching cells of the associated phase module. The control signal is formed, for each phase module, from the difference between a reference signal relating to the voltage over the phase module and a voltage signal over the inductor. The voltage signal over the inductor is formed from a reference signal relating to the current through the corresponding phase module. The reference signal relating to the current through the phase module is formed from a respective mean value or instantaneous value of a phase power of a phase of the first and second current or voltage systems connected to the phase module and from respective sums of the instantaneous values or the mean values of the phase powers of the phases of the first and second current or voltage systems, respectively.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: April 1, 2014
    Assignee: ABB Schweiz AG
    Inventors: Manfred Winkelnkemper, Arthur Korn
  • Patent number: 8686701
    Abstract: An active wire compensation circuit, adapted to compensate a level of an output voltage detecting signal, is disclosed. A feedback controller controls a converting circuit according to the compensated output voltage detecting signal to have a load voltage for driving a load stabilized at a predetermined voltage level. The active wire compensation circuit comprises a compensating unit and a feedback compensating unit. The compensating unit detects the load current flowing through the load and accordingly generates a compensating current. The feedback compensating unit modulates the level of the output voltage detecting signal according to the compensating current and generates the compensated output voltage detecting signal.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: April 1, 2014
    Assignee: Analog Vision Technology Inc.
    Inventor: Ming Chiang Ting
  • Patent number: 8670248
    Abstract: This invention provides a primary-side controlled power converter comprising: an RC network coupled to an auxiliary winding of a transformer of the primary-side controlled power converter to detect a reflected voltage of the transformer for generating a reflected signal, and a controller coupled to the RC network to receive the reflected signal for generating a switching signal; wherein the RC network develops a zero to provide a high-frequency path for shortening a rising time and a settling time of the reflected signal.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: March 11, 2014
    Assignee: System General Corporation
    Inventor: Ta-Yung Yang
  • Patent number: 8669746
    Abstract: The invention relates to an on-load tap changer comprising semiconductor switching elements for uninterrupted switching between winding taps of a tapped transformer. According to the invention, contact bars are provided which extend in the direction of the path of the fixed tap contacts and can be contacted using contact bridges that can be jointly moved by a contact slide in such a way that direct electrical connections to the charge diverter and electrical connections to the inputs and the output of the semiconductor switching elements can be established.
    Type: Grant
    Filed: February 6, 2010
    Date of Patent: March 11, 2014
    Assignee: Maschinenfabrik Reinhausen GmbH
    Inventors: Oliver Brueckl, Dieter Dohnal, Hans-Henning Lessmann-Mieske
  • Patent number: 8638575
    Abstract: In one embodiment, a startup circuit for a power supply is provided. The startup circuit comprises a resistance coupled between a voltage source and a first node. A first capacitor, coupled to the first node, is operable to be charged by current flowing through the resistance. A first transistor has an emitter, a base, and collector, wherein the collector is coupled to the voltage source and the base is coupled to the first node. A diac circuit, coupled to the emitter of the first transistor, is operable to fire to turn on the first transistor, thereby allowing discharge of the first capacitor through the base-emitter junction of the first transistor. A second capacitor is operable to be charged by current related to a discharge voltage resulting from the firing of the diac circuit. The second capacitor operable to store charge to provide VCC voltage to a controller of the power supply.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: January 28, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Richard A. Dunipace
  • Patent number: 8604761
    Abstract: In one embodiment, the current source arrangement comprises a current source (B), that has two output terminals (102, 103) and a control input (101) to be supplied with a control voltage (Vgs) and is set up to provide a current (I) as a function of a voltage (Vds) at the output terminals (102, 103) and the control voltage (Vgs), an operating point adjustment unit (E) that is supplied with an actual value (Vi) proportional to an actual value of the current (I) and is set up to provide the control voltage (Vgs) as a function of the actual value (Vi) and a predetermined target value (Iz) of the current (I), and a comparison unit (A) coupled to the control input (101) of the current source (B) for providing a monitoring signal (100), wherein the monitoring signal (100) is provided as a function of a predetermined limit voltage (VG) and the control voltage (Vgs). A method for operating a current source arrangement is also specified.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: December 10, 2013
    Assignee: AMS AG
    Inventors: Gilbert Promitzer, Peter Rust, Peter Boesmueller
  • Patent number: 8599587
    Abstract: An apparatus, device, and system for generating an amount of output power in response to a direct current (DC) power input includes a configurable power supply, which may be electrically coupled to the DC power input. The configurable power supply is selectively configurable between multiple circuit topologies to generate various DC power outputs and/or and AC power output. The system may also include one or more DC power electronic accessories, such as DC-to-DC power converters, and/or one or more AC power electronic accessories such as DC-to-AC power converters. The power electronic accessories are couplable to the configurable power supply to receive the corresponding DC or AC power output of the configurable power supply.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 3, 2013
    Assignee: SolarBridge Technologies, Inc.
    Inventors: Patrick Chapman, William R. Van Dell
  • Patent number: 8593124
    Abstract: A switching power source apparatus includes a high-side MOSFET 11, a ramp generator 18 to generate a ramp signal, an amplitude signal generator (second feedback controller 2) to generate an amplitude signal Comp corresponding to an amplitude of the ramp signal, and a first feedback controller 1 to control the ON timing of the high-side MOSFET 11 according to the ramp signal, a feedback signal FB, and a first reference voltage REF and control the ON width of the high-side MOSFET 11 according to the amplitude signal Comp. The ramp generator 18 controls the inclination of the ramp signal so that the ramp signal maintains a predetermined amplitude. The first feedback controller 1 controls the ON width of the high-side MOSFET 11 so that the ON width does not become narrower than a predetermined limit value.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: November 26, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Masaru Nakamura
  • Patent number: 8587965
    Abstract: A current-input-type parallel resonant DC/DC converter and a method thereof are provided. The converter includes an inverter-circuit for inverting/converting an input DC current into a positive-and-negative alternating square-wave-current, a resonant-network for converting the square-wave-current into a sine-voltage, a transformer for realizing the isolation of the power transmission, a full-wave rectifier-circuit for rectifying the sine-voltage, and an output-filter-circuit for producing a DC output-voltage.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 19, 2013
    Assignees: FSP-Powerland Technology Inc., FSP Technology Inc.
    Inventors: Ming Xu, Julu Sun
  • Patent number: 8570019
    Abstract: A switching power source apparatus includes a high-side MOSFET 11 connected to an input voltage, a ramp signal generator 18 to generate a ramp signal in synchronization with a switching frequency of the high-side MOSFET 11, an amplitude signal generator to generate an amplitude signal Comp corresponding to an amplitude of the ramp signal, a superposing circuit 3 to generate a second ramp signal having a positive inclination corresponding to the amplitude and frequency of the ramp signal and provide a superposed signal by superposing the second ramp signal on a first reference voltage, a controller 1 to control the ON timing and ON width of the high-side MOSFET 11, and a sudden heavy load detector 23 to detect if light load changes to heavy load, and if detects such a change, widen the ON width of the high-side MOSFET 11.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: October 29, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Masaru Nakamura
  • Patent number: 8552696
    Abstract: A control device of a self-excited reactive power compensation apparatus controls a reactive current output from a self-excited converter to a power system. The control device includes a first reference generating unit, a second reference generating unit, and a selecting unit. The first reference generating unit generates a first voltage reference of an output voltage output from the self-excited converter, such that the reactive current detected by a reactive current detecting unit follows a current reference. The second reference generating unit generates a second voltage reference of the output voltage output from the self-excited converter, such that a value of the reactive current becomes a predetermined value. The selecting unit selects a maximum value from the first and second voltage references.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: October 8, 2013
    Assignee: Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Naoki Morishima, Kotaro Higashi
  • Patent number: 8536735
    Abstract: In one aspect of the present invention, a converter circuit with input voltage balance includes a plurality of modules having inputs electrically series-connected to each other and outputs electrically parallel-connected to each other and a plurality of switching circuits with each electrically connected to an input connection node of a corresponding module and its immediate next module, and configured such that when an input voltage of the corresponding module or its immediate next module is in a desired range from a first predetermine value to a second predetermined value greater than the first predetermined value, the switching circuit operates in an open state, while when the input voltage is out of the desired range, the switching circuit operates in a conductive state so as to regulate the input voltage of the corresponding module or its immediate next module in the desired range.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 17, 2013
    Assignee: Delta Electronics (Shanghai) Co., Ltd.
    Inventors: Chao Yan, Yiqing Ye, Chongfeng Zheng, Jianping Ying
  • Patent number: 8508958
    Abstract: A controller for use in an LLC resonant converter is disclosed. An example controller is controlled by detecting a maximum frequency signal to set a maximum switching frequency of the LLC resonant converter. A burst stop frequency and a burst start frequency are programmed in response to the maximum switching frequency. The burst stop frequency and the burst start frequency are fractions of the maximum switching frequency. The LLC resonant converter is switched in response to a feedback signal to regulate an output of the LLC resonant converter. The steps of switching the LLC resonant converter in a burst mode in response to the feedback signal reaching a value corresponding to the programmed burst start frequency and of stopping the switching of the LLC resonant converter in the burst mode in response to the feedback signal reaching a value corresponding to the programmed burst stop frequency are repeated.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Power Integrations, Inc.
    Inventors: Raymond K. Orr, Hartley F. Horwitz, Paul W. DeMone
  • Patent number: 8427847
    Abstract: A resonant converter (10) comprising a voltage compensation circuit (72, 73) configured to generate a periodic compensation voltage signal (Vslopecompens) at a switching frequency of the converter such that conduction intervals (31, 32) are ended according to first and second voltage levels in combination with the periodic compensation signal.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 23, 2013
    Assignee: NXP B.V.
    Inventor: Hans Halberstadt
  • Patent number: 8395369
    Abstract: A buck converter includes a power supply unit, two MOSFETs and a delay circuit. The PWM module is coupled to the gates of the two MOSFETs to alternatively turn on the two MOSFETs. The delay circuit is coupled between an output terminal and an input node of the PWM module for making sure that a voltage applied to the PWM module is after a voltage applied to a drain the MOSFETs.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: March 12, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Song-Lin Tong, Qi-Yan Luo