Patents Examined by Ives Wu
  • Patent number: 8387545
    Abstract: A method for introducing flue gas in a steam-assisted production facility into a vapor-liquid contactor. In this method the flue gas comprises boiler combustion products selected from at least one of commercial pipeline natural gas and produced gas. The flue gas is cooled with the vapor-liquid contactor to condense a portion of the water vapor in the flue gas to produce a water stream. The water stream is then recirculated and cooled in an air cooler to produce recirculating water exiting the bottom of the vapor-liquid contactor. A water slipstream is then taken off the recirculating water to be used as make-up water.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 5, 2013
    Assignee: ConocoPhillips Company
    Inventors: Edward G. Latimer, Christopher R. Copeland, Ryan K. Davis, James Scinta, Dale L. Embry, David C. Lamont, Charles J. Murray, Ryan D. Donahe
  • Patent number: 8382962
    Abstract: A method of distilling mixtures of salts having a melting point of less than 200° C. at 1 bar (ionic liquids). The cation of the ionic liquid has a heterocyclic ring system having at least one nitrogen atom, and all nitrogen atoms of the heterocyclic ring system have an organic group as substituent. The anion of the ionic liquid is a compound having at least one carboxylate group or at least one phosphate group. The distance from the surface via which the heat of distillation is introduced in the distillation (vaporizer surface) to the surface at which condensation takes place (condenser surface) is less than 50 cm at at least one point, with the vaporizer surface and condenser surface themselves having at least one length dimension of greater than 50 cm.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: February 26, 2013
    Assignee: BASF SE
    Inventors: Klemens Massonne, Michael Siemer, Werner Mormann, Wei Leng
  • Patent number: 8366817
    Abstract: A system for purification of air in an inner space has a housing having air inlet unit and air outlet units; air filtering means located in the housing between the air inlet unit and the air outlet units; and vertical attachment attached to the air outlet units and extending vertically upwardly so that air enters the housing at a lower level through the air inlet units and leaves the system at an outlet of the attachment at a level substantially higher than the level of the inlet units and air conditioner located in said housing, a humidifier located in the vertical attachment, a water container for supplying water to said humidifier. The air conditioner is connected with the water container so that a spray of water from the air conditioner flows into the container.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: February 5, 2013
    Inventor: Gennady Ulunov
  • Patent number: 8366928
    Abstract: A filter (20) configured to separate the solid components and the liquid components from a slurry. The filter (20) includes a plurality of filter plate assemblies (46) that cooperate to define a plurality of filter chambers (70), each defining a perimeter (96) having an open section (98) when the filter plates (68) are in a closed position relative to one another. Each filter plate assembly (46) includes a closure (104) configured to close the open section (*). Preferably, the closures (104) are movable to an open position to permit a particulate cake to be removed from the filter chambers (70) without separating the filter plates (68).
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: February 5, 2013
    Inventor: Sean R. Duby
  • Patent number: 8361195
    Abstract: A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: January 29, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Roger D. Aines, William L. Bourcier, Brian Viani
  • Patent number: 8361280
    Abstract: A process is proposed for distillatively obtaining pure 1,3-butadiene from crude 1,3-butadiene in a plant comprising one or more distillation columns, comprising supply of a feed stream of crude 1,3-butadiene to the one distillation column or the first of the plurality of distillation columns, the one distillation column or the plurality of distillation columns having a flange with an internal diameter of ?80 mm, comprising two mutually opposite plane-parallel surfaces (1) with an intermediate seal (2) which seals the interior of the one distillation column or of the first of the plurality of distillation columns from an intermediate space (3) on the atmosphere side between the two mutually opposite plane-parallel surfaces (1), and the intermediate space (3) on the atmosphere side between the two mutually opposite plane-parallel surfaces (1) being closed off from the atmosphere to form a chamber, wherein the chamber is purged continuously during the operation of the plant with a low-oxygen gas or a low-oxygen
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: January 29, 2013
    Assignee: BASF SE
    Inventors: Uwe Stabel, Harry Zachmann, Eberhardt Gaffron, Bernd Heida, Michael Jäger
  • Patent number: 8357230
    Abstract: The invention relates to a process for purifying crude synthesis gas (1) containing metal carbonyls, in which undesirable substances such as sulphur components and/or carbon dioxide (CO2) and/or hydrocyanic acid (HCN) are scrubbed out by scrubbing with a physically acting scrubbing medium in at least one process step (main scrub (H)), and also an apparatus for carrying out the process. The crude synthesis gas (1) before introduction into the main scrub (H) is subjected to a gas scrub (carbonyl scrub (C)) in which a partial amount (4) of the laden scrubbing medium (2) taken off from the main scrub is used as scrubbing medium, with the partial amount (4) being chosen so that the metal carbonyls are (selectively) separated off from the crude synthesis gas (1) in the carbonyl scrub (C) largely independently of the other gas components.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: January 22, 2013
    Assignee: Linde Aktiengesellschaft
    Inventor: Ulvi Kerestecioglu
  • Patent number: 8353979
    Abstract: A heat recovery apparatus, for an absorption apparatus for removing CO2 in combustion exhaust gas emitted from a thermal power plant 112 and for regeneration apparatuses 104 to 107 for regenerating CO2 in an absorbing liquid from the absorption apparatus, includes a regeneration-apparatus-exit-CO2-gas cooling apparatus 100 for cooling CO2 gas from an exhaust port of the regeneration apparatus, and may further include a circulation line 102 for circulating reflux water among boiler feedwater heaters 114 and 116 in the thermal power plant 112 and the regeneration-apparatus-exit-CO2-gas cooling apparatus 100.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: January 15, 2013
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Tsuyoshi Oishi, Hiroshi Tanaka, Takahiko Endo, Masahiko Tatsumi, Yasuyuki Yagi
  • Patent number: 8353980
    Abstract: An apparatus and process for removing acidic gases from flue gases produced by, for example, utility and industrial facilities. The acidic gases are removed as the flue gas flows upward through a contact zone within a passage, where the flue gas is contacted with an ammonium sulfate-containing scrubbing solution to absorb the acidic gases from the flue gas. The scrubbing solution and absorbed acidic gases therein are then accumulated, and ammonia and an oxygen-containing gas are injected into the accumulated scrubbing solution to react the absorbed acidic gases and produce ammonium sulfate. An acid solution is flowed across the passage above the contact zone of the passage, and the scrubbed flue gas is flowed upward through the acid solution to remove unreacted ammonia from the scrubbed flue gas. The acid solution is then removed from the passage after the acid solution has been contacted by the scrubbed flue gas.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: January 15, 2013
    Assignee: Marsulex Environmental Technologies Corporation
    Inventor: David William Murphy
  • Patent number: 8349056
    Abstract: A system includes a direct contact absorber configured to circulate a flow of a liquid desiccant solution for absorbing moisture from a gas stream flowing through the direct contact absorber.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: January 8, 2013
    Assignee: General Electric Company
    Inventor: Robert Warren Taylor
  • Patent number: 8349055
    Abstract: A method of scrubbing flue gases of two or more diesel engines and a scrubber for scrubbing flue gases of two or more diesel engines. The scrubber (1) comprises scrubbing means (3) for scrubbing the flue gases, and conduits (4) for conveying the flue gases to said scrubbing means (3) to be scrubbed in the same scrubbing process. The different flue gas flows are arranged to be conveyed in separate conduits (4) all the way to the scrubbing means (3).
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: January 8, 2013
    Assignee: Metso Power Oy
    Inventors: Pekka Kaisko, Heikki Airikkala, Tarja Korhonen, Seppo Tuominiemi
  • Patent number: 8343317
    Abstract: Embodiments of the invention relate to methods and apparatuses for forming films using CVD. One or more method and apparatus embodiments include preventing the formation of bonds and/or breaking bonds that permit polymers to form in an exhaust line of a CVD apparatus.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: January 1, 2013
    Assignee: Applied Materials, Inc.
    Inventor: David K. Carlson
  • Patent number: 8343256
    Abstract: An integrated contaminant separator and water-control loop (10) decontaminates a fuel reactant stream of a fuel cell (12). Water passes over surfaces of an ammonia dissolving means (61) within a separator scrubber (58) while the fuel reactant stream simultaneously passes over the surfaces to dissolve contaminants from the fuel reactant stream into the water. An accumulator (68) collects the separated contaminant stream, and ion exchange material (69) integrated within the accumulator removes contaminants from the stream. A water-control pump (84) directs flow of a de-contaminated water stream from the accumulator (68) through a water-control loop (78) having a heat exchanger (86) and back onto the scrubber (58) to flow over the packed bed (62). Separating contaminants from the fuel reactant stream and then isolating and concentrating the separated contaminants within the ion exchange material (69) minimizes cost and maintenance requirements.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: January 1, 2013
    Assignee: UTC Power Corporation
    Inventors: Michael T. Lines, Derek W. Hildreth, John L. Preston, Jr.
  • Patent number: 8337601
    Abstract: An air filter sheet comprising particles of a functional agent with an average particle diameter of 0.1 to 30 ?m and fibrils of a polytetrafluoroethylene resin with a number average molecular weight of 3,000,000 to 50,000,000, the ratio by weight of the functional agent to the fibrils of the polytetrafluoroethylene resin being from 1 to 99. According to the present invention, an air filter sheet comprising fibrils of polytetrafluoroethylene resin with a functional agent carried thereon, possessing excellent formability, and being free from a lubricant, a process for manufacturing the air filter sheet, and an air filter free from contamination of outgas with a lubricant are provided.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: December 25, 2012
    Assignee: Nichias Corporation
    Inventors: Toshiro Nakano, Satoshi Minobe, Takashi Tanahashi
  • Patent number: 8337585
    Abstract: A counter flow scrubber column and method for removing volatile organic compounds from a fluid stream using a packed column, a columns with trays and a biodiesel or a biomass and allowing a user to view the status of the cleaned vapor using an executive dashboard 24 hours a day, 7 days a week.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: December 25, 2012
    Assignee: Vapor Point, LLC
    Inventors: Jefferey St. Amant, Kenneth R. Matheson
  • Patent number: 8337596
    Abstract: Hydrocarbyl substituted and unsubstituted polyethylene imines and polyacrylamide salts are absorption compositions and are useful in processes for the treatment of acid gas mixtures.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: December 25, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Cheng-Yu Wang, Michael Siskin
  • Patent number: 8328918
    Abstract: The invention relates to a mist eliminator system for gas scrubbers and the like. Said mist eliminator system comprises front and rear mist elimination layers in relation to the direction of the flow of gas, which layers are composed of respective rows of parallel mist elimination profiles, one layer of which being configured in the shape of a V or of an upturned V and the lateral sections of this layer extending away from the corresponding lateral sections of the other layer or extending in parallel thereto. Both mist elimination layers can be or are received on a single common carrier structure by a common lateral wall or a common supporting structure on which the lateral walls of the mist elimination layers are stationarily or detachably arranged.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: December 11, 2012
    Assignee: Munters Euroform GmbH
    Inventors: Helmut Kanka, Matthias Jansen, Roland Krauss, Roman Kaiser
  • Patent number: 8308850
    Abstract: Gas mixtures containing HF, HCl or HBr and other constituents, in particular gas mixtures containing carboxylic acid fluorides, C(O)F2 or phosphorus pentafluoride and HCl and possibly HF, can be fractionated by means of ionic liquids.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: November 13, 2012
    Assignee: Solvay Fluor GmbH
    Inventors: Jens Olschimke, Saskia Braukmüller, Carsten Brosch
  • Patent number: 8303686
    Abstract: The invention relates to a panel, comprising: two plates of substantially equal dimensions positioned on each other; which plates are connected medium-tightly to each other along their peripheral zones; which plates enclose a cavity; a feed for feeding a liquid, in particular water, into the cavity; and openings close to and along a peripheral edge of the panel for flow of the liquid out of the cavity during operation such that during operation the openings are situated close to the upper peripheral edge of the panel, wherein the liquid flows downward over at least one outer surface of the panel.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 6, 2012
    Assignee: Omega Thermo Products LLC
    Inventor: Herman Johan Oonk
  • Patent number: 8303685
    Abstract: An improved acid gas regeneration and injection process wherein the separated acid gas stream emerging from a regenerator is compressed and injected into subsurface reservoir, the improvement comprising conducting the acid gas separation in the regenerator under pressure that exceeds 50 psia and does not exceed 300 psia.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: November 6, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Craig N. Schubert, Timothy C. Frank