Patents Examined by Ives Wu
  • Patent number: 7892335
    Abstract: The invention relates to an apparatus for the transfer of organic compounds from a first liquid phase to a gaseous phase and from said gaseous phase to a second liquid phase, comprising a packed stripping column (2), a housing (5), a shell (1), a means for introducing the gaseous phase at the bottom end of said packed stripping column (2), a distributor (4) for distributing said first liquid phase onto said packed stripping column (2), causing said first liquid phase to trickle down said packed stripping column (2) counter-currently to the flow of the gas phase and causing the gas stream leaving said packed stripping column (2) at its top end to have a higher content of organic compounds than the gaseous phase introduced at the bottom end of said packed stripping column (2), one or more ducts (9/26) allowing the gaseous phase leaving said packed stripping column (2) to flow downwards to the bottom end of a packed scrubber (3) enclosed in a housing (25), a distributor (12) on top of said packed scrubber (3) ca
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 22, 2011
    Assignee: N.V. DeSmet Ballestra Engineering S.A.
    Inventors: Marc Kellens, Anthony Harper
  • Patent number: 7892324
    Abstract: Methods and systems for handling sour carbon dioxide (CO2) streams are provided. In one aspect, a method for sequestering an emissions-heavy gas includes removing at least a portion of an acid gas from a rich solvent in an acid gas stripper to create the emissions-heavy gas, and channeling the emissions-heavy gas to a storage system.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 22, 2011
    Assignee: General Electric Company
    Inventors: Arnaldo Frydman, Pradeep Thacker, Sachin Naphad, Aaron John Avagliano
  • Patent number: 7883569
    Abstract: Produced natural gas containing carbon dioxide is dehydrated and chilled to liquefy the carbon dioxide and then fractionated to produce a waste stream of liquid carbon dioxide and hydrogen sulfide. Natural gas liquids may be first separated and removed before fractionation. After fractionation, the waste stream is pressurized and transmitted to a remote injection well for injection either for disposal of the waste stream and preferably to urge hydrocarbons toward the producing well. A hydrocarbon stream proceeds from fractionation to a methanol absorber system which removes carbon dioxide gas. The hydrocarbon stream is thereafter separated into at least hydrocarbon gas, nitrogen and helium. Some of the nitrogen is reintroduced into a fractionation tower to enhance the recovery of hydrocarbons. A methanol recovery system is provided to recover and reuse the methanol. The hydrocarbons are sold as natural gas; and the helium is recovered and sold. Excess nitrogen is vented.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: February 8, 2011
    Inventor: Donald Leo Stinson
  • Patent number: 7875103
    Abstract: Systems and related methods for separating liquids and particulate from a flowing gas stream include a separation vessel containing a liquid injector, an impingement separator or a helical impingement separator, and a waste liquid recovery tank. Separated liquid and particulate collect in a sump, flow into a recovery tank, and may be filtered in a side stream duplex filter circuit for return into the recovery tank and re-injection into the separation vessel. The helical separator element has outwardly extending helical fins that form helical gas channels. The interior of the channels forms a rounded radius and opposing vertical edges of the channels include chamfers. The lower end of the helical separator element forms a concave, generally conical surface. The helical fins form a first impingement separator and the chamfers form a second vane-type impingement separator, such that particulate and liquids may be removed from the gas stream at varying flow rates and liquid/particulate densities.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 25, 2011
    Assignee: Mueller Environmental Designs, Inc.
    Inventor: Fred Mueller
  • Patent number: 7875108
    Abstract: An inactivating device for inactivating virus, bacteria, etc. including a humidifying unit for humidifying flowing air, a humidifying water supply unit for supplying the humidifying unit with humidifying water containing active oxygen species achieved by electrolyzing tap water, and a concentration adjusting unit for adjusting the concentration of the active oxygen species in the humidifying water to a predetermined concentration.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: January 25, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Kazuo Takahashi, Hiroshi Noguchi, Hiroaki Usui, Tsuyoshi Rakuma, Tetsuya Yamamoto
  • Patent number: 7862788
    Abstract: A chilled ammonia based CO2 capture system and method is provided. A promoter is used to help accelerate certain capture reactions that occur substantially coincident to and/or as a result of contacting a chilled ammonia based ionic solution with a gas stream that contains CO2.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: January 4, 2011
    Assignee: ALSTOM Technology Ltd
    Inventors: Eli Gal, Otto Morten Bade, Indira Jayaweera, Gopala Krishnan
  • Patent number: 7858696
    Abstract: An object of the present invention is to provide a conductive resin composition which does not cause problems with regard to moldability such as occurrence of separation between a resin component and a conductive filler, voids and warp on molding, and is excellent in filling of a resin into a mold, and is also capable of being used for various electrical and electronic materials, including a separator for a fuel cell having excellent properties.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: December 28, 2010
    Assignee: DIC Corporation
    Inventors: Takashi Yasumura, Toshiya Kato, Kenichi Hamada, Tetsuya Harada
  • Patent number: 7857891
    Abstract: Novel solvent composition for selective removal of COS from a gas stream containing same, said composition comprising a) at least one polyalkylene glycol alkyl ether of the formula (I) or 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone or a mixture of N-formylmorpholine and N-acetylmorpholine Wherein R1 is an alkyl group having from 1 to 6 carbon atoms; R2 is hydrogen or an alkyl group having from 1 to 4 carbon atoms; Alk is an alkylene group, branched or unbranched, having from 2 to 4 carbon atoms, and n is from 1 to 10; and b) at least one alkanolamine compound of the formula (II) or at least one piperazine compound of formula (III) wherein R3 is hydrogen, an alkyl group having from 1 to 6 carbon atoms, or the R4OH group; R4 is a branched or unbranched alkylene group having from 1 to 6 carbon atoms; R5, independently in each occurrence, is hydrogen or an hydroxyalkyl group having from 1 to 4 carbon atoms; and R6 is hydrogen, an alkyl group having from 1 to 6 carbon atoms or an hydroxyalkyl group having f
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: December 28, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Craig N. Schubert, Arnold C. Ashcraft
  • Patent number: 7857878
    Abstract: A dust collection unit for a vacuum cleaner includes a first dust collection part for filtering foreign objects in air, a second dust collection part for filtering foreign objects in the air that has passed through the first dust collection part, and a dust collection container having first and second dust collection chambers that correspond to the first and second dust collection parts, respectively. The first and second dust collection chambers store the foreign objects filtered by the respectively first and second dust collection parts in a state where parts of the respective first and second dust collection parts are received in the respective first and second dust collection chambers and the first and second dust collection chambers are provided in a line.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: December 28, 2010
    Assignee: LG Electronics Inc.
    Inventors: Tae Jin Park, Seong Yong Kim
  • Patent number: 7854792
    Abstract: Aspects include a valve comprising a flowing liquid, operable to control a flow of gas through a port. Certain aspects include reaction chambers operable to react gases, and in some aspects gases are substantially contained within an envelope comprised of a flowing liquid. Certain embodiments control gas entrance into a chamber with a valve comprised of a flowing liquid controlling gas flow through a port. Various gas scrubbing systems are described, including systems comprising reaction chambers operable to react gases that yield substantial amounts of solid reaction products. Methods for controlling gas flow are disclosed. Systems and methods include sequential steps of wet-scrubbing, reacting and further wet-scrubbing a gas stream.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: December 21, 2010
    Assignee: Airgard, Inc.
    Inventor: Mark Johnsgard
  • Patent number: 7854791
    Abstract: A method and apparatus are provided for improving the efficiency of an aqueous froth filter. An array of saturated mesh assemblies interacts with an incoming contaminated air stream. As the air stream flows through the saturated mesh assemblies, an aqueous froth is generated immediately downstream of each mesh assembly. As the bubbles of the froth move downstream towards the next saturated mesh assembly, the velocity of the air stream causes at least some of the bubbles to burst. The bursting bubbles rupture into hundreds or thousands of micro-droplets. The micro-droplets are used together with the aqueous froth to coalesce with or otherwise bind with contaminants in the air stream. An optional feature is that massive particles greater than three microns in diameter are removed by inertial impaction, whereby those heavy particles collide with the walls of serpentine shaped vanes of a mist eliminator. The method and apparatus are capable of filtering chemical and biological warfare agents out of an air stream.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: December 21, 2010
    Assignee: Westec Environmental Solutions LLC
    Inventor: Roy J. Pellegrin
  • Patent number: 7850764
    Abstract: Generally, the present invention provides a method and apparatus for removing a vapor phase contaminant from a gas stream, thereby reducing the concentration of the vapor phase contaminant in the gas stream. In one embodiment, the present invention provides a method for removing a vapor phase contaminant from a gas stream, comprising contacting a gas stream comprising a vapor phase contaminant with a first side of a membrane; sorbing the vapor phase contaminant using the membrane; reacting the vapor phase contaminant into an reacted form of the vapor phase contaminant; transporting the reacted form of the vapor phase contaminant through the membrane to a second side of the membrane; contacting the second side of the membrane with a liquid; and dissolving the reacted form of the vapor phase contaminant into the liquid. Methods for making a membrane comprising a metal for use in the present invention is also described.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 14, 2010
    Assignee: Electric Power Research Institute, Inc.
    Inventor: David W. DeBerry
  • Patent number: 7850769
    Abstract: An air filtering apparatus including a housing having an air suction port and air blow-out port, an electrolytic bath for generating electrolytic water, a gas-liquid contact member disposed in the housing, an electrolytic water supply unit for supplying the electrolytic water to the gas-liquid contact member so that the electrolytic water infiltrates into the gas-liquid contact member, an air blowing fan for bringing indoor air sucked from the air suction port into contact with the electrolytic water infiltrating in the gas-liquid contact member and blowing out the indoor air from the air blow-out port, a water receiving portion for receiving the electrolytic water passed through the gas-liquid contact member, and a foreign material removing mechanism for removing foreign materials contained in the electrolytic water. The foreign material may be a filter member disposed in front of the gas-liquid contact member, or a dam member disposed in the water receiving portion.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: December 14, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Kazuo Takahashi, Yoichi Uchida, Hiroaki Usui, Tetsuya Yamamoto, Keiko Kurokawa, Masayuki Motegi, Tomohito Koizumi, Hiroyuki Umezawa, Tsuyoshi Rakuma, Toshio Fukushima, Toru Arakawa, Hiroyuki Kobayashi
  • Patent number: 7850763
    Abstract: Impure carbon dioxide (“CO2”) comprising a first contaminant selected from the group consisting of oxygen (“O2”) and carbon monoxide (“CO”) is purified by separating expanded impure carbon dioxide liquid in a mass transfer separation column system. The impure carbon dioxide may be derived from, for example, flue gas from an oxyfuel combustion process or waste gas from a hydrogen (“H2”) PSA system.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: December 14, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vincent White, Rodney John Allam
  • Patent number: 7842116
    Abstract: A filter screen assembly for use with an air intake structure, the structure including a face within which is formed an air intake opening. The filter screen assembly includes a screen having a flexible mesh material and an outer perimeter edge. The perimeter edge is secured at specified locations to the face of the air intake structure, and in order to filter out contaminants associated with an air stream entering the intake structure and to prevent the screen from being drawn into the air intake opening.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: November 30, 2010
    Assignee: The Newway Company
    Inventor: Randy Simmons
  • Patent number: 7833503
    Abstract: A method for scrubbing a halogen-containing gas, comprises contacting the halogen-containing gas with water at a temperature of at least 30° C., the gas optionally subsequently being subjected to a further treatment step comprising contacting it with water at a temperature of less than 30° C. and/or a gas dilution step. An apparatus for carrying out the method comprises a hot wash chamber (6) and optionally a cold wash chamber (7) and/or a gas dilution device (13).
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: November 16, 2010
    Assignee: Edwards Limited
    Inventors: Christopher James Philip Clements, Derek Martin Baker, Andrew James Seeley
  • Patent number: 7833317
    Abstract: The invention relates to a system and a method for control of emission of volatile gases (VOC) from a holding tank (80) for crude oil during unloading, loading and transport/holding of the oil, such as in an oil tank on board an oil tanker, in which a blanket gas is used to regulate pressure and amount of combustible gas and to prevent ingress of oxygen into the mentioned holding tank for crude oil. The system comprises a recovery device (50) for recovery of hydrocarbon gas from the holding tank (80) for crude oil, a storage tank (18) for liquid hydrocarbons under pressure, supplied from the recovery device (50), and that liquid hydrocarbons are fed to an evaporation device (70) set up to convert liquid hydrocarbons to gas form, for use as blanket gas in a holding tank (80) for crude oil.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: November 16, 2010
    Inventor: Inge Sverre Lund Nilsen
  • Patent number: 7833328
    Abstract: The present invention is directed to methods for carbon dioxide from air, which comprises exposing solvent covered surfaces to air streams where the airflow is kept laminar, or close to the laminar regime. The invention also provides for an apparatus, which is a laminar scrubber, comprising solvent covered surfaces situated such that they can be exposed to air streams such that the airflow is kept laminar.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: November 16, 2010
    Assignees: The Trustees of Columbia University in the City of New York, Kilimanjaro Energy, Inc.
    Inventors: Klaus S. Lackner, Allen Wright
  • Patent number: 7828883
    Abstract: A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: November 9, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Roger D. Aines, William L. Bourcier
  • Patent number: 7828880
    Abstract: A liquid film is formed on the surface of a porous body provided with a hydrophobic layer and hydrophilic layer, by moving thereon an ionic liquid having a selective absorption capacity of specific gas, and the specific gas within the gas to be processed is absorbed into the liquid film by bringing pressurized gas to be processed into contact with the liquid film. The specific gas is, for example, a carbon dioxide gas and the ionic liquid is, for example, an imidazolium salt. The specific gas absorbed into the liquid film is passed through the porous body by the use of a difference in pressure, whereby it is collected on a low pressure side. The specific gas absorbed into this collected liquid is then separated into a gas and a liquid by a separator, and the specific gas is released and collected.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: November 9, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Yusuke Moriya, Toichiro Sasaki, Tetsuya Yanase