Patents Examined by J. A. Lorengo
  • Patent number: 7141521
    Abstract: This invention relates to a flat float glass that can be prestressed or transformed into a glass ceramic with high quartz mixed crystals or keatite mixed crystals. To eliminate undesirable surface defects during floating and to achieve superior characteristics of the glass or of the glass ceramic, in particular with regard to a low coefficient of thermal expansion and high light transmittance, the glass has a concentration of less than 300 ppb Pt, less than 30 ppb Rh, less than 1.5 wt. % ZnO and less than 1 wt. % SnO2, and is refined during melting without the use of the conventional fining agents arsenic oxide and/or antimony oxide.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: November 28, 2006
    Assignee: Schott Glas
    Inventors: Friedrich Siebers, Peter Nass, Gerhard Lautenschläger, Otmar Becker
  • Patent number: 7141528
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: November 28, 2006
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte
  • Patent number: 7141524
    Abstract: The lead-free, Li2O-free, CuO-free and preferably arsenic-free optical glass is suitable for applications in the fields of imaging, projection, telecommunications, optical communication technology and/or laser technology, and has a refractive index nd of 1.55?nd?1.60, an Abbe number Vd of 54?Vd?63 and a transformation temperature Tg?500° C. This optical glass has good production and processing properties and crystallization stability, and, at the same time, advantageously does not contain PbO and As2O3. These glasses contain, in percent by weight based on oxide content: P205, 43-56; ZnQ, 21-36; Al2O3, 0-6; Na2O, 0-16; K2O, 0-8; ?M2O ?16; MgO, 0-5; CaO, 0-5; BaO, 3-14; B2O3, 0-8; La2O3, 0-7. In addition, it may also contain standard refining agents.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: November 28, 2006
    Assignee: Schott AG
    Inventors: Silke Wolff, Ute Woelfel
  • Patent number: 7141107
    Abstract: The present invention is relative with a water color ink suited for ink jet printing for plain paper. The dry viscosity, the dynamic surface tension at 10 ms and the dynamic surface tension at 1000 ms of the ink are prescribed to be equal to 100 mPa·s or less, equal to 45 mN/m or higher and equal to 35 mN/m or less to provide for reduced bleeding and superior drying performance and emission reliability.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: November 28, 2006
    Assignee: Sony Corporation
    Inventors: Kaori Honma, Yoshinori Nakamura
  • Patent number: 7141103
    Abstract: New photosensitive optically variable inks are capable of printing images having improved resistance to water. The inks produce images which can be viewed with both visible and ultraviolet light to have physically coincident positive and negative images. They contain at least two types of colorants and other suitable ingredients to enable preparation for printing. The first colorant comprises a fluorescent dye emitting light within a characteristic emission band when excited by fluorescent-exciting radiation. The second colorant, which comprises a colloidal pigment alone or with a dye, has a light absorption band at longer wavelengths than the characteristic emission band of the first colorant or overlapping the emission wavelength of the first colorant, effectively to result in a dark color.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: November 28, 2006
    Assignee: Pitney Bowes Inc.
    Inventors: Judith D. Auslander, Mike Y. R. Chen
  • Patent number: 7141525
    Abstract: The present invention provides a high refractive index, high dispersion optical glass for precision molding, being free from harmful materials causing environmental problems, such as lead oxide, etc., and having a low yield temperature (At), i.e. at most 580° C., a refractive index (nd) of at least 1.89 and an Abbe number (?d) of at most 23.0 and further providing a low softening property as well as an improved mass production property with less coloration, which is represented in terms of for making up the glass, by the following chemical composition (wt %): P2O5 3 to 20% B2O3 0 to 5% GeO2 more than 14 to 37% Sum of P2O5 + B2O3 + GeO2 24 to 43% Li2O 0 to 5% Na2O 0 to 8% K2O 0 to 10% Sum of Li2O + Na2O + K2O 1 to 10% Nb2O5 0 to 50% Bi2O3 12 to 67% BaO 0 to 5% WO3 0 to 12%.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: November 28, 2006
    Assignee: Sumita Optical Glass, Inc.
    Inventors: Yoshinori Yamamoto, Koichi Tsuchiya, Naruhito Sawanobori, Shinobu Nagahama
  • Patent number: 7141111
    Abstract: Described herein are embedded pigments consisting of a labile chromophore englobed in a coating of refractory and transparent material formed by nanomolecular particles, also described are oxides of refractory and transparent materials in the form of nanoparticles and their use for coating labile chromophores or ceramic surfaces.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 28, 2006
    Assignee: Colorobbia Italia S.P.A.
    Inventors: Giovanni Baldi, Andrea Barzanti, Marco Bitossi
  • Patent number: 7138357
    Abstract: The invention relates to a photocatalyst containing titanium dioxide, to a method for using it and to its application. A sulphurous titanium dioxide hydrate precipitate is precipitated from an acid titanium oxysulphate solution at a temperature below the boiling point of the solution, e.g. in the range from 70 to 100° C., using crystal nuclei and without addition of base. The precipitate is separated, washed and calcinated. The photocatalytic titanium dioxide thus obtained has a specific area in the range from 100 to 250 m2/g and a 0.3 to 5% sulphur concentration. Catalytic activity has been confirmed in asetal dehyde decomposition and in anionic (SNC?)2 radical formation.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: November 21, 2006
    Assignee: Kemira Pigments Oy
    Inventors: Saila Marjatta Karvinen, Ralf-Johan Lamminmäki
  • Patent number: 7138348
    Abstract: An optical glass has optical constants which are an refractive index (nd) of 1.70–1.75 and an Abbe number (vd) of 45.0–54.0; a glass transformation temperature (Tg) of 500–580° C. The glass has the following composition in mass percent of: SiO2 more than 5–15%; B2O3 20-less than 30%; a total amount of SiO2+B2O3 more than 25–40%; La2O3 more than 21-less than 30%; Y2O3 more than 5–15%; Gd2O3 0-less than 10%; ZrO2 1–8%; Nb2O5 0.1–5%; Ta2O5 more than 5–12%; a total amount of ZrO2+Nb2O5+Ta2O5 7–20%; ZnO 0–10%; CaO 0–10%; SrO 0–5%; BaO 0–10%; a total amount of ZnO+CaO+SrO+BaO 5–15%; Li2O 1–8%; Sb2O3 0–1%; and As2O3 0–1%. The glass is substantially free of Yb2O3 and Al2O3. Devitrification is not generated when the optical glass is kept at a temperature of 920° C. for two hours.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: November 21, 2006
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Susumu Uehara
  • Patent number: 7138354
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: November 21, 2006
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte
  • Patent number: 7135428
    Abstract: A catalyst solution for the anionic polymerization of lactones and/or lactams comprises a salt of at least one compound of the general formula I In this formula (I), R1 is H or an aliphatic, cycloaliphatic or aromatic radical with 1 to 12 C atoms which can also have heteroatoms or hetero groups, the radical R2, which is the same or different, is H, halogen, C1–C5-alkyl, ethoxy or wherein said solvation agent S comprises N-methylpyrrolidone, N-octylpyrrolidone, N-cyclohexylpyrrolidone, N-octylcaprolactam, tetrabutyl urea or mixtures thereof methoxy, and n=1, 2 or 3, and wherein the salt is dissolved in an aprotic solvation agent S.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: November 14, 2006
    Assignee: Ems-Chemie AG
    Inventors: Eduard Schmid, Heinz Hoff, Ornulf Rexin
  • Patent number: 7135427
    Abstract: A carboxy-modified aluminum-based catalyst composition is of the general formula P(O)(OAlR?R?)3 or RP(O)(OAlR?R?)2 wherein O represents oxygen, P represents pentavalent phosphorous, Al represents aluminum, R comprises hydrogen, an alkyl group, or an aryl group, and R? and R? independently comprise a halide, an alkyl group, a haloalkyl group, an alkoxy group, an aryl group, an aryloxy group, or a carboxy group, so long as at least one of R? and R? is a carboxy group. The carboxy-modified aluminum-based catalyst composition is, generally, the reaction product of phosphoric acid or a pentavalent phosphonic acid, a tri-substituted aluminum compound, and a carboxylic acid.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: November 14, 2006
    Assignee: BASF Corporation
    Inventor: Edward Michael Dexheimer
  • Patent number: 7132383
    Abstract: A polymerization catalyst for polyester production which contains neither a germanium compound nor an antimony compound as a major component. It contains aluminum as the main metallic ingredient, has excellent catalytic activity, and gives a polyester which is effectively inhibited from suffering thermal degradation, during melt molding, without deactivating or removing the catalyst, and is excellent in thermal stability, stability to thermal oxidation, and hydrolytic resistance. The polymerization catalyst contains as a first metallic ingredient at least one member selected among aluminum and compounds thereof and further contains a phosphorus compound represented by a specific chemical formula. The polyester produced with this catalyst is usable as fibers, films, sheets, various moldings including hollow moldings, etc.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: November 7, 2006
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Takahiro Nakajima, Kenichi Tsukamoto, Shoichi Gyobu, Fumikazu Yoshida, Maki Sato, Naoki Watanabe, Katsuhiko Kageyama, Mitsuyoshi Kuwata, Nobuo Moriyama, Haruo Matsumoto, Yoshitomo Ikehata, Yoshinao Matsui, Masaou Matsuda, Munekazu Okuhara, Hiroki Fukuda
  • Patent number: 7132014
    Abstract: An oil-based pigmented ink composition containing a pigment, a polymer and an organic solvent, wherein the organic solvent contains a (poly)alkylene glycol derivative in an amount of 30 to 90% by weight and a nitrogen-containing heterocyclic compound in an amount of 1 to 30% by weight, each based on the whole weight of the ink composition, and the ink composition has a flash point of at least 63° C.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: November 7, 2006
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Takuo Mizutani, Takahiro Furutani
  • Patent number: 7132013
    Abstract: An oil-based pigmented ink composition containing a pigment, a polymer and an organic solvent, wherein the organic solvent contains a (poly)alkylene glycol derivative in an amount of 30 to 90% by weight and a nitrogen-containing heterocyclic compound in an amount of 1 to 30% by weight, each based on the whole weight of the ink composition, and the ink composition has a flash point of at least 63° C.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: November 7, 2006
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Takuo Mizutani, Takahiro Furutani
  • Patent number: 7128892
    Abstract: Mesoporous hexagonal, cubic, lamellar, wormhole, or cellular foam aluminosilicates, gallosilicates and titanosilicates derived from protozeolitic seeds using an ionic structure directing agent are described. The silicon and aluminum, gallium or titanium centers in the structures are stable so that the framework of the structure does not collapse when heated in the presence of water or water vapor (steam). The steam stable compositions can be used as catalysts for hydrocarbon conversions, including the fluidized bed catalytic cracking and the hydrocracking of petroleum oils, and other reactions of organic compounds.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: October 31, 2006
    Assignee: Board of Trustees of Michigan State University
    Inventors: Thomas J. Pinnavaia, Wenzhong Zhang, Yu Liu
  • Patent number: 7125447
    Abstract: An oil-based ink composition for ink jet recording of the present invention contains a colorant and at least 50% by weight of a mixed solvent made by mixing from 0.02 to 4 parts by weight of a lactone-type solvent with 1 part by weight of polyoxyethylene glycol dialkyl ether represented by the following general formula (1): R11—(OC2H4)n—OR12??General Formula (1) (wherein R11, R12 represent alkyl groups having from 1 to 3 carbon atoms and can be the same or different, and n is an integer from 2 to 4). The oil-based ink composition can be suitably used for printing on a polyvinyl chloride substrate and is excellent in all of print quality, printing stability, dry characteristics of printed matter, and storage stability of ink.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: October 24, 2006
    Assignees: The Intec Inc., Seiko Epson Corporation
    Inventors: Yukio Sugita, Mitsuyoshi Tamura, Masahiro Nakamura, Seiji Mochizuki, Makoto Otsuki
  • Patent number: 7122077
    Abstract: This invention pertains to an ink set for inkjet printing, in particular to an ink set comprising at least one ink comprising colorant and nonaqueous vehicle; and a fixing fluid comprising fixing agent and aqueous vehicle. The invention also pertains to a method of inkjet printing with this ink set.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: October 17, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Richard Douglas Bauer, Clarence Gaetano Hermansky
  • Patent number: 7118618
    Abstract: The colored liquid composition of the invention for a highlighter comprises a coloring element and water, the water content by weight lies in the range 10% to 30%. In addition, it comprises at least 40% of a liquid component having surface tension greater than 40 mN/m. In a variant, the coloring element is a tracer solvent having a fluorescent appearance under basic pH, in particular hydroxypyrenetrisulfonic acid, the pH of the composition lying in the range 8 to 9, and the component having surface tension greater than 40 mN/m is triethanolamine. Under such circumstances, the composition contains an acid to neutralize the triethanolamine in part in order to obtain the basic pH, for example hydrochloric acid.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: October 10, 2006
    Assignee: Conte
    Inventors: José Duez, Carine Bethouart
  • Patent number: 7118620
    Abstract: To reduce show through, particularly for color pigments, a particulate negative metal oxide. Specifically in an anionic ink, tin oxide of primary particle size in the range of about 10 to 30 nm, is incorporated in inkjet inks in amount of less than 2 percent by weight of the total weight of the ink.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: October 10, 2006
    Assignee: Lexmark International, Inc.
    Inventor: Mohanram Jayaram