Patents Examined by Jai M Lee
  • Patent number: 11455225
    Abstract: An electronic device may be provisioned with an infrared (IR) light-emitting diode (LED) configured to externally transmit identifying information that particularly identifies the device, such as the device serial number, to outside of the device. A companion portable IR LED reader may be used to systematically scan a row or shelf or rack of electronic devices to read the respective communication signals transmitted from each of the respective devices, thereby enabling quick and accurate physical identification of the devices in a system/datacenter and inhibiting the unnecessary removal of an incorrect or misidentified device for replacement.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: September 27, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Jeff Furlong, Dean M. Jenkins
  • Patent number: 11451308
    Abstract: A quantum communications system may include a transmitter node, a receiver node, and a quantum communications channel coupling the transmitter node and receiver node. The transmitter node may include a pulse transmitter and a pulse divider downstream therefrom. The pulse divider may be configured to divide each pulse having a plurality of X photons into a plurality of Y time bins with Y>X. The receiver node may include a pulse recombiner and a pulse receiver downstream from the pulse recombiner.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: September 20, 2022
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Victor G. Bucklew, Samuel H. Knarr, Samuel Nunez, Cypryan T. Klish, James Drakes
  • Patent number: 11451303
    Abstract: An example system includes a first network device having first circuitry. The first network device is configured to perform operations including receiving data to be transmitted to a second network device over an optical communications network, and transmitting first information and second information to the second device. The first information is indicative of the data, and is transmitted using a first communications link of the optical communications network and using a first subset of optical subcarriers. The second information is indicative of the data, and is transmitted using a second communications link of the optical communications network and using a second subset of optical subcarriers. The first subset of optical subcarriers is different from the second subset of optical subcarriers.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: September 20, 2022
    Assignee: Influera Corporation
    Inventor: Steven Joseph Hand
  • Patent number: 11444719
    Abstract: Systems and methods include receiving first power snapshot from a receiving end of a foreign controlled link of the one or more foreign controlled optical links when there are no faults thereon; responsive to obtaining second power snapshot from the receiving end of the foreign controlled link, detecting a fault on one of at least one channel and part of the spectrum traversing the foreign controlled link; correlating the second power snapshot with the first power snapshots; and raising an indication of fault for the foreign controlled link based on the correlating.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: September 13, 2022
    Assignee: Ciena Corporation
    Inventors: Choudhury A. Al Sayeed, Mark Hinds
  • Patent number: 11444693
    Abstract: A free space optical FSO space data transmission system includes a first ground or aeronautical optical terminal, a second optical terminal housed on board a satellite, and a relay platform. The relay platform is configured so as to move at an altitude higher than that of clouds and atmospheric turbulence, so as to receive the data transmitted by the first terminal in the MWIR/LWIR domain of long wave infrared LWIR wavelengths and/or medium wave infrared MWIR wavelengths, and retransmit the received data to the second terminal in the domain of short wave infrared SWIR wavelengths, and/or receive the data transmitted by the second terminal in the domain of short wave infrared SWIR wavelengths, and retransmit the received data to the first terminal in the MWIR/LWIR domain of long wave infrared LWIR wavelengths and/or medium wave infrared MWIR wavelengths.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: September 13, 2022
    Assignee: THALES
    Inventors: Anaëlle Maho, Michel Sotom, Alexandre Delga, Mickaël Faugeron
  • Patent number: 11438086
    Abstract: An optical system, comprising a first wavelength conversion module to: adjust a power of a first pump wavelength; couple an input signal with the first pump wavelength to generate a first coupled signal; perform a first wavelength conversion of the first coupled signal to generate a first wavelength converted signal, the power of the first pump wavelength is adjusted such that the first wavelength conversion is performed with 0 dB conversion efficiency; the optical amplifier to amplify the first wavelength converted signal; a second wavelength conversion module to: adjust a power of a second pump wavelength; couple the amplified first wavelength converted signal with the second pump wavelength to generate a second coupled signal; perform a second wavelength conversion of the second coupled signal to generate a second wavelength converted signal with 0 dB conversion efficiency.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: September 6, 2022
    Assignee: Fujitsu Limited
    Inventors: Youichi Akasaka, Takeshi Hoshida
  • Patent number: 11431419
    Abstract: A quantum communications system includes a quantum key generation system having a photonic quantum bit generator, a low loss dispersion limiting fiber having a length L, for example greater than 200 km, and a photon detector unit and a communications network having a signal generator, a signal channel, and a signal receiver. The low loss dispersion limiting fiber extends between and optically couples the photonic quantum bit generator and the photon detector unit. Further, the low loss dispersion limiting fiber is structurally configured to limit dispersion at an absolute dispersion rate of about 9 ps/(nm)km or less, and preferably 0.5 ps/(nm)km or less, and induce attenuation at an attenuation rate of about 0.175 dB/km or less such that the quantum key bit information of a plurality of photons output by the one or more photonic quantum bit generators is receivable at the photon detector unit at a bit rate of at least 10 Gbit/sec.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: August 30, 2022
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Daniel Aloysius Nolan
  • Patent number: 11431410
    Abstract: A free space optical communications transmitter terminal including an optical source arranged to provide a first beam of light encoding information to be communicated; an optical source arranged to provide photons encoding bits of a key of a Quantum Key Distribution protocol; and an optics arrangement. The first beam and the photons are linearly polarised. The optics arrangement is configured to combine the first beam and the photons into a single, second, beam to be transmitted to a receiver terminal; and transform the linear polarisation of the first beam into one of left and right circular polarisation and transform the linear polarisation of the photons into the other of left and right circular polarisation. A receiver terminal receives the second beam, transforms the circular polarisations into orthogonal linear polarisations, and filters out the linear polarisation of the first beam to allow the photons to pass to a single photon detector.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: August 30, 2022
    Assignee: AIRBUS (SAS)
    Inventors: Crisanto Quintana Sanchez, Gavin Erry, Yoann Thueux
  • Patent number: 11431433
    Abstract: Optical protection switching apparatus (10), for a single fibre bidirectional WDM optical ring, comprising: first (12) and second (14) ports for coupling to first and second adjacent portions of a single fibre bidirectional WDM optical ring; an optical splitter (16) comprising an input to receive a WDM aggregate optical signal, and first and second outputs coupled to the first and second ports; an optical switch (108) between the second output and the second port; and processing circuitry (24) to receive at least one of an indication of transmission continuity in the optical ring and an indication of transmission discontinuity in the optical ring, and to generate a switch control signal (20) comprising instructions to cause the optical switch to be open when there is transmission continuity in the optical ring and to cause the optical switch to be closed when there is transmission discontinuity in the optical ring.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 30, 2022
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Stefano Orsi, Paolo Debenedetti, Roberto Magri
  • Patent number: 11418265
    Abstract: The invention relates to the field of Free Space Optics (FSO), more specifically it is directed to: a method of obtaining a connection between at least two optical signal nodes, of a FSO, communication system each node comprising a transmitting device and receiving device; and transmitting via the transmitting device of a first node, a first diverged optical signal into an optical medium; receiving at the receiving device of the second node the first diverged optical signal and transmitting via the transmitting device of the second node a second diverged signal to the receiving device of the first node to establish a location of said first node establishing a connection, after which; the first node switches from the diverged optical signal to a narrower optical signal for the transmission of data via the connection.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: August 16, 2022
    Assignee: BAE SYSTEMS PLC
    Inventors: Michael Stewart Griffith, Andrew James Williams
  • Patent number: 11418264
    Abstract: An optical modulation system comprises a signal source configured to generate an amplitude modulated electrical signal having a bandwidth and divided into frequency components comprising at least a first frequency component covering a first portion of the bandwidth and a second frequency component covering a second portion of the bandwidth; and an electro-optic modulator for receiving an input optical signal, the modulator having a first optical path and a second optical path, the input optical signal being divided between the first optical path and the second optical path and recombined after propagation along the first optical path and the second optical path to produce an output optical signal, and at least one of the first optical path and the second optical path comprising a phase shifter comprising a pair of electrodes in which each electrode is configured to receive a driving signal; wherein the or each phase shifter is coupled to the signal source to receive at least one of said frequency components a
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: August 16, 2022
    Assignee: University of Southampton
    Inventors: Graham Trevor Reed, Ke Li, Sheghao Liu, David John Thomson
  • Patent number: 11411653
    Abstract: Techniques for automatically determining an input resistance of an optical modulator and configuring a modulation current source can include applying a first bias current to an input of the optical transmitter and measuring a corresponding first voltage at the input of the optical transmitter. A second bias current can also be applied to the input of the optical transmitter and a corresponding second voltage at the input of the optical transmitter can be measured. An input resistance of the specific optical transmitter can be determined from the difference between the first and second voltages divided by the difference between the first and second bias currents. The technique can further include setting one or more configuration settings in one or more registers of a modulation current source based on the determined input resistance of the optical transmitter.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: August 9, 2022
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Eric Lozsef, George L. Barrier, IV
  • Patent number: 11405106
    Abstract: The disclosure relates to a setup for receiving an optical data signal having input optics for receiving the signal. An optical receiving fiber with an end facet is provided, which can be injected into the optical receiving fiber by an optical collimation system. A detector for detecting the optical data content is connected to the optical receiving fiber. A receive calibration source is provided, which is connected to the optical receiving fiber by a circulator. An insertable retroreflector is provided in the light path for adjusting the setup into the light path so that light from the receive calibration source is reflected and focused by the optical collimation system onto the end facet of the receiving fiber. The distance in the z-direction between the optical collimation system and the end facet of the receiving fiber is adjusted by the power of the light from the receive calibration source detected.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: August 2, 2022
    Assignee: Deutsches Zentrum für Luft- und Raumfahrt e.V.
    Inventors: Fabian Rein, Juraj Poliak, Ramon Mata Calvo
  • Patent number: 11387916
    Abstract: A communication system includes an antenna assembly. The antenna assembly includes an optical communication layer including a plurality of electro-optical (EO) antennas for communicating via an EO signal and a radio-frequency communication layer including a plurality of radio frequency (RF) antennas for communicating via an RF signal. A processor operates the antenna assembly to communicate via one or both of the EO signal and the RF signal.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: July 12, 2022
    Assignee: RAYTHEON COMPANY
    Inventors: Matthew C. Thomas, John J. Drab, Theodore Mark Kellum
  • Patent number: 11387917
    Abstract: A wireless slip ring, system and method for transmission of data across a rotatable junction can be provided to permit transmission of data from a fixed element to a rotating element across a rotary interface. The wireless slip ring can provide high bandwidth multi-channel data transmission, for example each channel can have a bandwidth greater than 1 gigabit per second. Each channel may include a plurality of input/output data streams that can be serialized by a digital electronic circuit for transmission across the slip ring and then deserialized into its respective data streams. The wireless slip ring can form an annular chamber to act as a wave guide for the wireless signal for providing a continuous conductive covering around the annular chamber to act as a faraday shield to contain radio frequency emissions and prevent external jamming.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: July 12, 2022
    Assignee: General Dynamics Land Systems—Canada Corporation
    Inventors: Herb Peyerl, Andrew Hookey, Terry Chepyha
  • Patent number: 11381317
    Abstract: An optical receiving device that divides receive signals obtained by receiving an optical signal using a coherent detection scheme into a plurality of frequency bands, matches timing of the receive signals along a time axis between the frequency bands resulting from the division, performs a combining process of combining the receive signals contained in the plurality of frequency bands, and compensates the receive signals for waveform distortion either before or after the combining process, includes: a first wavelength dispersion compensation unit adapted to compensate the receive signals for waveform distortion in each of the frequency bands resulting from the division; a first nonlinear compensation unit adapted to compensate the receive signals belonging to each of the frequency bands and timed with each other in a time domain for a nonlinear optical effect; and a second wavelength dispersion compensation unit adapted to compensate the receive signals belonging to each of the frequency bands and compensate
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: July 5, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Seiji Okamoto, Yoshiaki Kisaka, Masanori Nakamura
  • Patent number: 11375146
    Abstract: Amplitude-modulated (AM) signals spanning a spatial wide area can be efficiently detected using a slowly scanning optical system. The system decouples the AM carrier from the AM signal bandwidth (or carrier uncertainty), enabling Nyquist sampling of only the information-bearing AM signal (or the known frequency bandwidth). The system includes a staring sensor with N pixels (e.g., N>106) that searches for a sinusoidal frequency of unknown phase and frequency, perhaps constrained to a particular band by a priori information about the signal. Counters in the sensor pixels mix the detected signals with local oscillators to down-convert the signal of interest, e.g., to a baseband frequency. The counters store the down-converted signal for read out at a rate lower than the Nyquist rate of AM signal. The counts can be shifted among pixels synchronously with the optical line-of-sight for scanning operation.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: June 28, 2022
    Assignee: Massachusetts Institute of Technology
    Inventor: Kenneth Schultz
  • Patent number: 11356178
    Abstract: A method for monitoring leakage in the aeronautical band of a high split HFC includes providing an apparatus for use in a patrol vehicle, the apparatus including a leak signal receiver coupled to a processor; setting a plurality of coefficients for an OUDP matched filter for a current location of the patrol vehicle; detecting peaks over a detection threshold at an output of the OUDP matched filter; and determining a presence of a leak based on a time stamp and a level of each detected peak. An upstream leak detection system is also described.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: June 7, 2022
    Assignee: Arcom Digital, LLC
    Inventor: Victor Zinevich
  • Patent number: 11343599
    Abstract: An optical network includes an arrangement of optical nodes. An optical node of the arrangement, and corresponding method, perform optical connectivity discovery and negotiation-less optical fiber continuity verification in the optical network. An overall topology of optical connectivity provisioned for the arrangement is discovered by the optical node based on messages received from a management network communicatively coupling the optical nodes to each other. The optical node synchronizes, temporally and sequentially, with the other optical nodes based on the messages received, assigns fiber of the overall topology, based on a verification sequencing method, to verification slots of a verification sequence, and verifies continuity of fiber according to the verification slots of the verification sequence.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: May 24, 2022
    Assignee: XIEON NETWORKS S.a.r.l.
    Inventors: Michael Marti, Rafael da Costa Miranda, Nuno Miguel Pires da Costa Pereira
  • Patent number: 11340478
    Abstract: Provided is an optical transmitter having improved frequency characteristics by controlling the band by using components constituting the optical transmitter. An optical transmitter including an optical modulator that includes a traveling-wave electrode and a terminating resistor, and an optical modulator driver configured to drive the optical modulator, in which a characteristic impedance of a transmission line connecting the optical modulator driver and the optical modulator is 20% or more higher than a characteristic impedance of the optical modulator, and an electrical length of the transmission line is 1/20 or more and ½ or less of a wavelength corresponding to a 3 dB band frequency of an electrical signal driving the optical modulator.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: May 24, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Toshihiro Ito, Ken Tsuzuki, Masayuki Takahashi, Kiyofumi Kikuchi