Patents Examined by Jaime Figueroa
  • Patent number: 11965308
    Abstract: A system and method are provided for evenly distributing the loading of material in a loading container of a transport vehicle (e.g., articulated dump truck) by a work machine (e.g., excavator). At least one sensor mounted on the work machine generates data corresponding to at least a portion of the loading container. The captured data is processed to determine a current profile of material loaded in the loading container, wherein output signals are generated corresponding to a difference between the current profile and a predetermined target profile for the material loaded in the loading container. In certain embodiments, the output signals are used to assist an operator of the work machine with manual loading via an onboard display unit and superposed images associated with the current and/or target profiles. In other embodiments, the output signals automatically control at least part of the loading process.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: April 23, 2024
    Assignee: Deere & Company
    Inventors: Jon C. Gilbeck, Jonathan Spendlove, Zimin Vilar
  • Patent number: 11964660
    Abstract: An apparatus comprising an arm control path, a deploy control path and a communication module. The arm control path may be configured to trigger an arm signal. The deploy control path may be configured to trigger a deploy signal. The communication module may be configured to communicate a remote signal to/from an end device, generate a bypass signal in response to the remote signal and generate the remote signal in response to detecting the arm signal. An activation signal for an actuator may be generated in response to the arm signal and the deploy signal. The arm signal and the deploy signal may be generated independently. The communication module may enable the remote signal to activate the end device. The bypass signal may be compatible with the arm control path and ensure an independent and parallel path for the arm control path to generate the arm signal.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: April 23, 2024
    Assignee: VEONEER US SAFETY SYSTEMS, LLC
    Inventors: Haitham Islim, John Fitzpatrick, Ron Wantuck, James Gramenos
  • Patent number: 11964393
    Abstract: A robot control system determines which of a number of discretizations to use to generate discretized representations of robot swept volumes and to generate discretized representations of the environment in which the robot will operate. Obstacle voxels (or boxes) representing the environment and obstacles therein are streamed into the processor and stored in on-chip environment memory. At runtime, the robot control system may dynamically switch between multiple motion planning graphs stored in off-chip or on-chip memory. The dynamically switching between multiple motion planning graphs at runtime enables the robot to perform motion planning at a relatively low cost as characteristics of the robot itself change. Various aspects of such robot motion planning are implemented in particular systems and methods that facilitate motion planning of the robot for various environments and tasks.
    Type: Grant
    Filed: July 12, 2023
    Date of Patent: April 23, 2024
    Assignee: REALTIME ROBOTICS, INC.
    Inventors: Daniel Sorin, George Konidaris, Sean Murray, William Floyd-Jones, Peter Howard, Xianchao Long
  • Patent number: 11967912
    Abstract: An object of the present invention is to provide a motor control device capable of estimating a delay with high accuracy even in a case where there is a fluctuation in disturbance torque or delay time and of suppressing the influence of the delay. For this end, the present invention includes a motor MTR, an ECU 2 that controls the rotation of the motor MTR, and an ECU 1 that sends a torque command to the ECU 2 based on a command value. The ECU 1 includes a disturbance estimation block 100 and a delay estimation block 200. The disturbance estimation block 100 estimates disturbance torque (?d) using a torque command input to the ECU 2 and a feedback value of the motor MTR. The delay estimation block 200 estimates a delay using a torque command output from the ECU 1, the feedback value of the motor MTR, and the disturbance torque (?d).
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 23, 2024
    Assignee: Hitachi Astemo, Ltd
    Inventors: Hiroaki Sato, Toshiyuki Ajima, Kenichiro Matsubara, Daisuke Goto
  • Patent number: 11964398
    Abstract: Systems and methods for autonomous robot distributed processing are provided. A method includes receiving, at a robot, camera output from a camera located on the robot. The method may further include outputting the camera output to a mobile client device. The method may also further include receiving at the robot, from the mobile client device, object recognition metadata based upon the camera output. The method may additionally include outputting a notification from the robot to a user of the mobile client device based upon the object recognition metadata.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: April 23, 2024
    Assignee: Micropharmacy Corporation
    Inventors: Peter Pekarek-Kostka, John E. Kulesza
  • Patent number: 11958484
    Abstract: An autonomous vehicle includes processor circuitry to control a lateral position of the autonomous vehicle during autonomous driving at least based on a default lateral position and a user interface arranged to receive an input indicative of an off-set of the lateral position from a user of the autonomous driving vehicle, wherein the processor circuitry is arranged to receive, from the user interface, information regarding the off-set of the lateral position of the autonomous driving vehicle during driving in the lateral position, calculate a maximum right and a maximum left off-set of the lateral position, calculate a dynamic off-set value based on the received off-set and the maximum right and the maximum left off-set, adjust the lateral position based on the off-set information, and control the lateral position at least based on the dynamic off-set value and the default lateral position of the autonomous driving vehicle.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: April 16, 2024
    Assignee: Ningbo Geely Automobile Research & Dev. Co., Ltd.
    Inventors: Magnus Brandin, Per Landfors
  • Patent number: 11958458
    Abstract: A vehicle controller includes a collision detector, a braking controller, a motional state detector, and a minor collision determiner. The collision detector is configured to detect a collision between a vehicle and another object. The braking controller is configured to cause a braking device of the vehicle to generate a braking force in accordance with the detecting of the collision by the collision detector. The motional state detector is configured to detect a motional state of the vehicle. The minor collision determiner is configured to determine, based on an output from the motional state detector, that a minor collision occurs that is a collision not detected by the collision detector. The braking controller is configured to cause the braking device to generate the braking force if the collision detector does not detect the collision and the minor collision determiner determines that the minor collision occurs.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: April 16, 2024
    Assignee: SUBARU CORPORATION
    Inventors: Eiichi Shiraishi, Takashi Takeda, Shintaro Ikeda, Satoru Akiyama
  • Patent number: 11958478
    Abstract: Disclosed in the present invention is a method for automatically avoiding or mitigating a potential collision of an external moving object with a motor vehicle, the method comprising: detecting whether a potential collision of the motor vehicle with the external moving object exists under a predetermined activation condition; and if it is determined that a potential collision exists, automatically changing a movement characteristic of the motor vehicle without changing a direction currently indicated by a steering wheel when the motor vehicle meets a predetermined movement condition, in order to avoid or mitigate the occurrence of the potential collision. Also disclosed are a corresponding control system for a motor vehicle, a corresponding computer-readable storage medium and a corresponding motor vehicle.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: April 16, 2024
    Assignee: Robert Bosch GmbH
    Inventor: Zijian Yang
  • Patent number: 11951983
    Abstract: An autonomous controller for lateral motion includes a vehicle positioning module that calculates a lateral departure degree from the center of a virtual line after a line is lost using position information of a vehicle. The position information is derived by data obtained from the vehicle which is traveling. The controller also includes a driving route determination module that determines the virtual line connecting waypoints previously generated on a map for a section where the line is lost to connect an old line with a new line. A lateral control module then performs lateral autonomous control of the vehicle in a direction where the lateral departure degree is minimized to cause the vehicle to follow a driving route connecting waypoints set on the virtual line to travel.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: April 9, 2024
    Assignees: Hyundai Motor Company, Kia Corporation
    Inventor: Hyun Su Kim
  • Patent number: 11951986
    Abstract: Systems and methods of electrically heating catalyst (EHC) driver notification are provided. With the goal of increasing driver cooperation in reducing emissions, EHC driver notification systems notify the driver when the EHC is in an inefficient operation state. This notification is provided to the driver so that the driver may consciously operate the vehicle in a fashion that reduces emissions while the EHC is in the inefficient operation state. EHC driver notifications systems may also restrict operation of the vehicle when the EHC is in an inefficient operation state. However, for safety reasons, these systems provide the driver a function to bypass the restriction as needed.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: April 9, 2024
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventor: Alessandro Concas
  • Patent number: 11950970
    Abstract: Provided is a medical support arm system including a support arm that is a multilink structure having a plurality of links connected by a joint unit including an actuator, and supports a medical unit. The medical support arm system further includes a control device including an external force estimation unit to estimate an external force acting on the joint unit on the basis of a drive characteristic of the actuator, and a joint control unit to control drive of the joint unit on the basis of an external torque estimated by the external force estimation unit.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: April 9, 2024
    Assignee: SONY GROUP CORPORATION
    Inventors: Yasuhiro Matsuda, Fumiyasu Suzuki, Atsushi Miyamoto, Yohei Kuroda, Kenichiro Nagasaka
  • Patent number: 11952011
    Abstract: Methods and devices for digitally combining multiple access or entry enabling items or keys and/or location data of multiple destinations. A device may wirelessly communicate with a plurality of access control devices. The access control devices may individually authenticate a digital key of a plurality of digital keys identifiable by key identification data stored in a memory of the device. The device may further include a processor. The processor may be configured to determine that the digital key is authenticated by one of the access control devices. The processor may be further configured to communicate with the one access control system to prompt the one access control system to allow access to a user of the device. The processor may be further configured to communicate the location data to a navigation system. The processor may be further configured to transmit access tokens and/or location data to other devices.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: April 9, 2024
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Masashi Nakagawa, Seisuke Kasaoki
  • Patent number: 11951868
    Abstract: The disclosure is directed at an apparatus for an active converter dolly for use in a tractor-trailer configuration. In one aspect, the apparatus includes a system to connect a first trailer towed behind a towing vehicle to a second trailer. The apparatus further includes a kinetic energy recovery device for translating the mechanical motions or actions of the dolly into electricity or electrical energy so that this energy can be used to charge a battery or to power other functionality for either the dolly or the tractor-trailer. The active dolly may also operate to assist in shunting the tractor-trailer. The active dolly is operable in a number of modes to increase vehicle performance and efficiency.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: April 9, 2024
    Assignee: ELECTRANS TECHNOLOGIES LTD.
    Inventors: Brian Layfield, Amir Khajepour, Brian Fan, John Loewen
  • Patent number: 11944399
    Abstract: A computer-assisted medical device includes a first articulated arm, a second articulated arm, an arm stabilizer, and a control system. The arm stabilizer includes first and second clamps and one or more sensors. The first and second clamps are configured to couple the arm stabilizer to the first and second articulated arms. At least one of a distance or a relative orientation between the first and second clamps is adjustable and the one or more sensors are configured to determine the distance or relative orientation. The control system is configured to implement a following mode in which the control system drives movement of the second articulated arm in response to movements of the first articulated arm and the arm stabilizer.
    Type: Grant
    Filed: January 11, 2023
    Date of Patent: April 2, 2024
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Amy E. Kerdok, Margaret M. Nixon, Douglas S. Langley, Wesley Swanson, Mahdi Azizian
  • Patent number: 11947352
    Abstract: Sensor data that includes or more of the following: (1) aircraft state information associated with an aircraft or (2) parachute canopy state information associated with a parachute canopy is received. The parachute canopy is coupled to the aircraft at a point aft of a center of mass of the aircraft. It is determined, based at least in part on the sensor data, whether to generate a control signal associated with maneuvering the aircraft into a nose-up position. A recovery action is performed, including by deploying the parachute canopy; wherein a load on the parachute canopy is reduced in the event the aircraft is in the nose-up position compared to the aircraft being in a nose-down position.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: April 2, 2024
    Assignee: Kitty Hawk Corporation
    Inventors: Cameron Robertson, Joseph Roop, Todd Reichert, Damon Vander Lind
  • Patent number: 11945705
    Abstract: Controlling a maximum vehicle speed for an industrial vehicle includes determining, by a processor of the industrial vehicle, a torque applied to the traction wheel of the industrial vehicle; converting the torque to an equivalent force value; and determining an acceleration of the industrial vehicle while the torque is applied to the traction wheel. Additional steps include calculating a load being moved by the industrial vehicle, based at least in part on the acceleration and the equivalent force value; and controlling the maximum speed of the industrial vehicle based on the calculated load being moved by the industrial vehicle.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: April 2, 2024
    Assignee: Crown Equipment Corporation
    Inventors: Joe K. Hammer, Mark E. Addison
  • Patent number: 11945462
    Abstract: Systems and methods for managing speed thresholds for a fleet of vehicles are disclosed. Input is used to provide associations between particular weather-relation conditions (such as rain) and arithmetic operations, that may be used to determine a current speed threshold as a function of a local posted speed limit at the current location of a vehicle. The current speed threshold is subsequently used to detect whether vehicles are exceeding the current speed threshold.
    Type: Grant
    Filed: December 14, 2022
    Date of Patent: April 2, 2024
    Assignee: SmartDrive Systems, Inc.
    Inventors: Samuel Thomas Kruse, David Wagstaff, Jason Palmer
  • Patent number: 11945413
    Abstract: In a rainfall amount measurement apparatus, raindrop amount information corresponding to an attachment amount of raindrops attached to an outer wall surface of a windshield of the vehicle in a measurement period is acquired based on an output of a detector configured to generate an output corresponding to the attachment amount of raindrops. The raindrop amount information is used to set a wiping interval in a wiper wiping the raindrops attached to the outer wall surface. The measurement value of a rainfall amount per unit time is calculated based on the raindrop amount information, and outputted to an outside of the vehicle.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: April 2, 2024
    Assignee: DENSO CORPORATION
    Inventor: Takamitsu Okura
  • Patent number: 11947437
    Abstract: Provided is a method, computer program product, and system for automatically assigning robotic devices to users based on need using predictive analytics. A processor may monitor activities performed by one or more users. The processor may determine, based on the monitoring, a set of activities that require assistance from a robotic device when being performed by the one or more users. The processor may match the set of activities to a set of capabilities related to a plurality of robotic devices. The processor may identify, based on the matching, a first robotic device that is capable of assisting the one or more users in performing a first activity of the set of activities. The processor may deploy the first robotic device to assist the one or more users in performing the first activity.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: April 2, 2024
    Assignee: International Business Machines Corporation
    Inventors: Willie L. Scott, II, Charu Pandhi, Seema Nagar, Kuntal Dey
  • Patent number: 11938965
    Abstract: Vehicle allocation system includes an information provision apparatus, a first apparatus: control apparatus, and a user's second apparatus: user terminal apparatus. Processor of the information provision apparatus calculates a first driving plan for a vehicle in response to request information. When a second driving plan different from the first driving plan is calculated based on detection information acquired from the vehicle, the processor determines the cause of a change in the driving plan on the basis of the detection information. The processor transmits cause information including the cause to the user terminal apparatus. The user terminal apparatus presents the cause information on a display.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: March 26, 2024
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masayasu Suzuki, Masahide Nakamura, Masaki Watanabe, Daisuke Saito