Patents Examined by James Arnold, Jr.
  • Patent number: 6747165
    Abstract: A process for preparing branched alkyl aromatic hydrocarbons, which process comprises contacting branched olefins with an aromatic hydrocarbon under alkylating conditions, which branched olefins have been obtained by a process which comprises dehydrogenating an isoparaffinic composition over a suitable catalyst which isoparaffinic composition has been obtained by hydrocracking and hydroisomerization of a paraffinic wax and which isoparaffinic composition comprises paraffins having a carbon number in the range of from 7 to 35, of which paraffins at least a portion of the molecules is branched, the average number of branches per paraffin molecule being at least 0.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: June 8, 2004
    Assignee: Shell Oil Company
    Inventors: Laurent Alain Michel Fenouil, Brendan Dermot Murray, Paul Marie Ayoub
  • Patent number: 6740229
    Abstract: This invention relates to a method for drying the charge of a unit that treats petroleum cuts with a low water charge that consists in injecting a hydrolysable chemical compound into said charge. The quantity of the chemical compound injected is at least equal to the quantity necessary for all the water contained in the charge to react by hydrolysis with said chemical compound. The invention finds its application in units that treat petroleum cuts and whose operation is sensitive to the presence of water in their charges, in particular the paraffin base hydrocarbon isomerisation units. One drawing.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: May 25, 2004
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Pedro Nascimento, Jacques Couillard, Jean-Louis Mauleon, Alain Milan
  • Patent number: 6740227
    Abstract: A baffle-style stripper for an FCC process having a complete or nearly complete coverage of stripping openings over the sloped surface of the baffle will provide improved stripping efficiency and catalyst flux through the stripper. The complete distribution of relatively small openings over the entire surface of a sloped baffle has been found to interrupt relatively dense streamers of catalyst that were previously not known to exist and which short-circuited the contact of the stripping fluid with the catalyst. Spreading out the stripping gas across the sloped area of the baffle to a much greater extent than has been practiced in the past has now been found to promote active contacting of the catalyst with the stripping fluid over the entire volume of the stripper between the baffles.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: May 25, 2004
    Assignee: UOP LLC
    Inventor: Brian W. Hedrick
  • Patent number: 6736940
    Abstract: Tire pyrolysis systems and processes are provided which include feeding tire shreds to a pyrolysis reactor, pyrolyzing the shreds in a pyrolysis reactor to produce a hydrocarbon-containing gas stream and carbon-containing solid, removing the carbon-containing solid from the reactor, directing the hydrocarbon-containing gas stream into a separator, contacting the hydrocarbon-containing gas stream with an oil spray in the separator thereby washing particulate from the hydrocarbon-containing gas stream and condensing a portion of the gas stream to oil, removing and cooling the oil from the separator, directing non-condensed gas from the gas stream away from the separator, and directing a portion of the cooled oil removed from the separator to an inlet of the separator for use as the separator oil spray.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: May 18, 2004
    Assignee: Renaissance Recycling, Inc.
    Inventors: Blaine Masemore, Robert Zarrizski
  • Patent number: 6736963
    Abstract: Economical processes are disclosed for the production of fuels of reduced sulfur content from a feedstock, typically derived from natural petroleum, wherein the feedstock is comprised of limited amounts of sulfur-containing organic compounds as unwanted impurities. The processes involve an integrated, multiple stage system for converting these impurities to higher boiling products by alkylation and removing the higher boiling products by fractional distillation. Advantageously, the processes include selective hydrogenation of the high-boiling fraction whereby the incorporation of hydrogen into hydrocarbon compounds, sulfur-containing organic compounds, and/or nitrogen-containing organic compounds assists by hydrogenation removal of sulfur and/or nitrogen. Products can be used directly as transportation fuels and/or blending components to provide, for example, more suitable components for blending into fuels which are more friendly to the environment.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: May 18, 2004
    Assignee: BP Corporation North America Inc.
    Inventors: Vivek R. Pradhan, Ptoshia A. Burnett, Stacey McDaniel, Michael Hodges
  • Patent number: 6733660
    Abstract: Economical processes are disclosed for the production of fuels of reduced sulfur content from a feedstock, typically derived from natural petroleum, wherein the feedstock is comprised of limited amounts of sulfur-containing organic compounds as unwanted impurities. The processes involve integrated, multistage processes which include pretreatment of a light naphtha with a solid adsorbent to remove basic nitrogen containing compounds, chemical conversion of one or more of the sulfur-containing impurities to higher boiling products by alkylation, and removing the higher boiling products by fractional distillation. Advantageously, the processes include selective hydrogenation of the high-boiling fraction whereby the incorporation of hydrogen into hydrocarbon compounds, sulfur-containing organic compounds, and/or nitrogen-containing organic compounds assists by hydrogenation removal of sulfur and/or nitrogen.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: May 11, 2004
    Assignee: BP Corporation North America Inc.
    Inventors: Vivek R. Pradhan, Ptoshia A. Burnett, Stacey McDaniel, Michael Hodges
  • Patent number: 6726835
    Abstract: Savings in the processing of a naphtha boiling range feed containing a thiophene are achieved by fractionating the feed stream in a single dividing wall column to yield a C6-minus overhead stream, a side-draw containing the majority of the C6 and C7 paraffins and olefins, and a bottoms stream comprising C7 and heavier hydrocarbons. A dividing wall column provides better control of the concentration of both thiophene and toluene in the side-draw. Less of the valuable naphtha is lost and the amount of thiophene in the overhead product is minimized.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: April 27, 2004
    Assignee: UOP LLC
    Inventors: Gavin P. Towler, Michael A. Schultz
  • Patent number: 6726836
    Abstract: A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted hydrocarbon fuel stock supply which is used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like; or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, thiophenes and the like. The undiluted hydrocarbon fuel supply is passed through a nickel reactant desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the now desulfurized hydrocarbon fuel supply continues through the remainder of the fuel processing system. The method involves adding hydrogen to the fuel stream prior to the desulfurizing step. The method can be used to desulfurize either a liquid or a gaseous fuel stream.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: April 27, 2004
    Assignee: UTC Fuel Cells, LLC
    Inventors: Roger R. Lesieur, Brian A. Cocolicchio, Antonio M. Vincitore
  • Patent number: 6726833
    Abstract: The present invention discloses a process for hydroconverting a heavy hydrocarbon chargestock, wherein said chargestock oil is first contacted with a highly active homogeneous hydrogenation catalyst to effect the hydrogenation reaction so that macromolecular radicals of the residue (the precursor of coke) form as less as possible, thereby decreasing the output of coke in the hydrocracking of the residue; when the reaction proceeds to a certain extent, a solid powder is added to adsorb the macromolecular radicals of the residue formed during the reaction and lower their reaction activity, thereby preventing them from further condensing to coke and/or depositing due to polymerization. The synergetic action of the two sorts of substances makes it possible to produce substantively no coke or less coke during the hydrogenation of residue in a suspension bed and prolong the operation lifetime of the unit.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: April 27, 2004
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum & Petrochemicals, SINOPEC Corporation
    Inventors: Baoping Han, Lijing Jiang, Youliang Shi, Pai Peng, Mei Jin, Zhaoming Han
  • Patent number: 6723227
    Abstract: Fluidized catalytic cracking process which process comprises: (a) separating the hydrocarbon product from the spent catalyst by means of one or more gas-solid separation steps; (b) stripping the spent catalyst in a dense phase fluidized stripping zone by introducing a stripping medium in the lower portion of the stripping zone; (c) introducing part of the spent catalyst obtained in step (b) to a regeneration zone wherein the coke is removed from the catalyst by means of combustion; (d) introducing the remaining part of the spent catalyst and part of the hot regenerated catalyst into a lower portion of an elongated dilute phase stripping zone; (e) introducing a stream of a stripping medium into the lower portion of the dilute phase stripping zone to contact the resulting mixture of spent catalyst and regenerated catalyst therein; (f) passing a stream of the spent catalyst mixed with the hot regenerated catalyst and stripping medium in the dilute phase stripping zone; (g) introducing the separated catalyst of s
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: April 20, 2004
    Assignee: Shell Oil Company
    Inventor: Rene Samson
  • Patent number: 6723228
    Abstract: An additive used in catalytic cracking of hydrocarbons, which is in the form of homogeneous liquid and comprises a composite metal compound, wherein said composite metal compound consists of the oxides, hydroxides, organic acid salts, inorganic acid salts or metal organic complex compounds of at least one of the 1st group metals and at least one of the 2nd group metals, wherein the 1st group metals are selected from the group consisting of the metals of the IIIA, IVA, VA, VIA groups of the Element Period Table, boron, silicon, phosphorous and tellurium; wherein the 2nd group metals are selected from the group consisting of alkali-earth metals, transition metals, and rare earth metals, is disclosed. A process of catalytic cracking of hydrocarbons, utilizing the additive is also disclosed. The additive can passivate metals and promote the oxidation of CO, and is operated easily with production cost decreased.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: April 20, 2004
    Assignees: China Petrochemical Corporation, Luoyang Petrochemical Engineering Corporation
    Inventors: Shuqin Su, Guoliang Wang, Haiqing Guo, Xianliang Deng, Longyan Wang, Wenyi Qi, Shufang Liu, Baojian Shen, Jinlong Liu, Dongming Zhao
  • Patent number: 6717021
    Abstract: A solvating component for a solvated mesophase pitch. The solvated component includes a mixture of aromatic hydrocarbons having boiling points in the atmospheric equivalent boiling point range of about 285° to about 500° C. (about 550° F.-932° F.). At least 80% of the carbon atoms of the hydrocarbons are aromatic as characterized by carbon 13 NMR. The aromatic hydrocarbons are selected from a group consisting of aromatic compounds having 2 to 5 aromatic rings, substituted aromatic compounds having 2 to 5 aromatic rings wherein said substituents are alkyl groups having 1 to 3 carbons, hydroaromatic compounds having 2 to 5 rings, substituted aromatic compounds having 2 to 5 rings wherein said substituents are alkyl groups having 1 to 3 carbons, and mixtures thereof.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: April 6, 2004
    Assignee: ConocoPhillips Company
    Inventors: H. Ernest Romine, John A. Rodgers, W. Mark Southard, Edward J. Nanni
  • Patent number: 6712955
    Abstract: A slurry hydroprocessing process for upgrading a hydrocarbon feedstock containing nitrogen and sulfur using bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals wherein the ratio of Group VIB metal to Group VIII metal is about 10:1 to about 1:10.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: March 30, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Zhiguo Hou, Roby Bearden, Jr., Ferrughelli Thomas David, Sabato Miseo, Martin Leo Gorbaty, Stuart Leon Soled
  • Patent number: 6702935
    Abstract: A VGO stream is initially hydrocracked in a hydrocracking reaction zone within an integrated hydroconversion process. Effluent from the hydrocracking reaction zone is combined with a light aromatic-containing feed stream, and the blended stream hydrotreated in a hydrotreating reaction zone. Heat exchange occurs between the hydrocracking reaction zone and the hydrotreating reaction zone, permitting the temperature control of the initial hydrocracking zone. The integrated reaction system provides a single hydrogen supply and recirculation system for use in two reaction processes.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: March 9, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis R. Cash, Arthur J. Dahlberg
  • Patent number: 6692634
    Abstract: The invention relates to chemistry and in particular to technology for processing hydrocarbon fuel, including engine fuel. The invention makes it possible to obtain a fuel with high cetane and octane numbers by means of the following: the initial fuel supply occurs simultaneously with ejection; an ozone containing gas is fed into the ejection area; turbulent flows are created by displacement of such a mixture; the transformed mixture is directed into a volume with a stable pressure level; and thermodynamic equalization of the mixture parameters is achieved. During thermodynamic equalization, sprayed water is injected into said mixture.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: February 17, 2004
    Inventors: Leonid Yakovlevich, Andrei Grigorievich Lyapin
  • Patent number: 6689712
    Abstract: A hydrorefining catalyst containing a metal belonging to group VIB of the Periodic Table and phosphorus is made by bringing the supporting liquid into contact with a porous carrier formed of inorganic oxide. The supporting liquid is an aqueous solution of a metal belonging to group VIB of the Periodic Table, a phosphorus compound, a hydroxycarboxylic acid, and hydrogen peroxide added to water. Thee hydroxycarboxylic acid content of the supporting liquid is such that molar ratio of group VIB metal:hydroxycarboxylic acid is 1:0.05 to 1:1 and the hydrogen peroxide content of the supporting liquid is such that molar ratio of group VIB metal:hydrogen peroxide is 1:0.03 to 1:1. The catalyst made with the supporting liquid has excellent desulfurization activity.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: February 10, 2004
    Assignee: Japan Energy Corporation
    Inventor: Hideo Tanaka
  • Patent number: 6676830
    Abstract: A process for the desulfurization of a light boiling range (C5-350° F.) fluid catalytically cracked naphtha, which may be first subjected to a thioetherification to react the diolefins with mercaptans contained in it to form sulfides, is fed to a high pressure (>250 psig) catalytic distillation hydrodesulfurization step along with hydrogen under conditions to react most of the organic sulfur compounds, including sulfides from the thioetherification to form H2S. The H2S and a light product stream (C5's and C6's) are removed as overheads. The bottoms from the catalytic distillation hydrodesulfurization step is fractionated and the bottoms from the fractionation contacted with hydrogen in a straight pass hydrogenation step in the presence of a hydrodesulfurization catalyst at pressure of >250 and temperature >400° F. to further reduce the sulfur content.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: January 13, 2004
    Assignee: Catalytic Distillation Technologies
    Inventors: Montri Vichailak, Bertrand Klussman, Mario J. Maraschino
  • Patent number: 6673234
    Abstract: A combined process of low degree solvent deasphalting and delayed coking, which comprises feeding a deasphalting stock and a solvent into an extractor and making the yield of the deasphalted oil 70 wt %-95 wt %, and introducing a part or all of the deasphalted oil and optionally a conventional coking stock into a delayed coker. This process increases the yield of liquid products, removes the heavy asphaltene which is prone to coke, extends the run length of the delayed coker, and at the same time, lowers the content of impurities in coke, enlarges the sources of the stocks for producing the needle coke.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: January 6, 2004
    Assignees: China Petroleum and Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Rui Li, Zijun Wang, Jun Long
  • Patent number: 6673237
    Abstract: A method of increasing the selective desulfurization of naphtha feed streams that includes: combining a naphtha feed stream with a hydrogen containing gas to form a combined feed stream and reacting the combined feed stream over a monolithic honeycomb catalyst bed containing hydrodesulfurization catalyst components to give a desulfurized naphtha. In conducting such an illustrative embodiment, the percent desulfurization of the naphtha is preferably greater than about 50% and the percent olefin hydrogenation of the naphtha is preferably less than about 50%. The monolithic honeycomb catalyst bed of one alternative and illustrative embodiment preferably has a channel density of about 25 to 1600 cells per square inch; a channel size from about 0.1 to 10 mm; and a channel wall thickness of about 0.01 to about 2.0 mm. The illustrative method should be carried out such that the octane number (R+M/2) of the naphtha feed stream is reduced by no more than 3.0 at 95% desulfurization and preferably no more than 1.5.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Corning Incorporated
    Inventors: Wei Liu, Tinghong Tao
  • Patent number: 6673236
    Abstract: The present invention provides a method for producing hydrocarbon fuels with ultra-low levels of sulfur. The method involves catalytic oxidation of the sulfurous compounds within the hydrocarbon fuel, followed by extraction of the oxidized (and polarized) sulfurous compounds using a polar solvent. The present invention teaches the involvement of ethanol during catalytic oxidation. In this way, the oxidation catalyst has a dual-role in the oxidation process: firstly the catalyst directly oxidizes the sulfurous compounds, and secondly the oxidation catalyst converts of a small portion of the alcohol to the corresponding peroxy acid, which also helps to drive the oxidation process.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: January 6, 2004
    Assignee: Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources
    Inventors: Maria Stanciulescu, Michio Ikura