Patents Examined by James L Rogers
  • Patent number: 10844112
    Abstract: A method for purifying an antibody or an antibody fragment containing ?-chain variable region includes adsorbing at least one of the antibody or the antibody fragment onto an affinity separation matrix by contacting a liquid sample with the affinity separation matrix, washing the affinity separation matrix to remove impurities, and separating the at least one of the antibody or the antibody fragment from the affinity separation matrix by using an acetate buffer. The liquid sample includes the at least one of the antibody or the antibody fragment. The affinity separation matrix includes a water-insoluble carrier and a ligand selected from the group consisting of Protein L, a variant of Protein L, a domain of Protein L, and a variant of the domain. The ligand is immobilized on the water-insoluble carrier.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: November 24, 2020
    Assignee: KANEKA CORPORATION
    Inventors: Dai Murata, Shinichi Yoshida, Kazunobu Minakuchi
  • Patent number: 10808013
    Abstract: A first immunoglobulin ? chain variable region-binding peptide includes an amino acid sequence of SEQ ID NO: 21 with substitution of one or more amino acid residues at the 15th position, the 16th position, the 17th position or the 18th position, wherein an acid dissociation pH thereof is shifted to a neutral side. A second immunoglobulin ? chain variable region-binding peptide further includes deletion, substitution and/or addition of 1-20 amino acid residues at positions other than the 15th position, the 16th position, the 17th position and the 18th position. A third immunoglobulin ? chain variable region-binding peptide includes an amino acid sequence with a sequence identity of 80% or more to the amino acid sequence of the first immunoglobulin ? chain variable region-binding peptide.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: October 20, 2020
    Assignee: KANEKA CORPORATION
    Inventor: Shinichi Yoshida
  • Patent number: 10808042
    Abstract: The present disclosure relates to non-natural binding proteins comprising one or more non-natural immunoglobulin (Ig) binding domains wherein at least one non-natural lg-binding domain comprises the amino acid sequence X1 X2X3XiXsX5X7 XsQQX11AFYX1sX15LX1 sX19PX21 LX23X24X2sQRX28X2gf IQSLKDDPSXio SXi2Xi3Xi4LXi5EAXigKLXs2Xs3Xs4QXs5PX. The disclosure also relates to compositions such as affinity matrices comprising the non-natural Ig-binding proteins of the invention. Use of these Ig-binding proteins or of the compositions for affinity purification of immunoglobulins and to methods of affinity purification.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: October 20, 2020
    Assignee: Navigo Proteins GmbH
    Inventor: Ulrich Haupts
  • Patent number: 10793622
    Abstract: The invention provides a three-step chromatography process for small and large-scale purification of proteins, specifically monoclonal antibodies, using only four buffer solutions made from a mother solution.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: October 6, 2020
    Assignee: SANOFI
    Inventors: Didier Duthe, Celine Hemet, Laure Landric-Burtin, Benoit Mothes
  • Patent number: 10793592
    Abstract: The present invention relates to the purification of target molecules like recombinant and/or biotherapeutic proteins. Activated carbon can be used to remove leachables and/or extractables resulting from disposable equipment employed in the process.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: October 6, 2020
    Assignee: Merck Patent GmbH
    Inventors: Romas Skudas, Klaus Adrian, Bianca Edlemann, Sven Andrecht, Wilson Moya
  • Patent number: 10787500
    Abstract: Methods for purifying multispecific antibodies on interest (MAIs) that co-engage at least two different antigens or epitopes (also referred to targets, used interchangeably throughout), from compositions comprising the MAI and parental homodimeric antibody species are provided, as well as reagents which may be used to practice such methods.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: September 29, 2020
    Assignee: Adimab, LLC
    Inventors: Juergen Hermann Nett, K. Dane Wittrup, Maximiliano Vasquez
  • Patent number: 10766924
    Abstract: To provide an affinity support in which a binding property of a ligand to a target substance is improved. The affinity support contains a solid phase support and a protein ligand, wherein the protein ligand is represented by formula (1): R—R1 (1) wherein R represents a linker binding to the solid phase support, which contains a polyproline, and R1 represents a protein showing an affinity to immunoglobulin, and the R is bound to a C terminal or an N terminal of an amino acid sequence in R1.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: September 8, 2020
    Assignees: JSR CORPORATION, JSR LIFE SCIENCES CORPORATION
    Inventors: Takashi Ichii, Satoshi Nakamura, Jun-ichi Yasuoka, Kaori Itaya, Tomonori Shiotani
  • Patent number: 10738078
    Abstract: In certain embodiments, the invention provides a method of purifying a protein of interest from a mixture which comprises the protein of interest and one or more contaminants, comprising: a) subjecting the mixture to a first chromatography step; b) recovering the protein of interest in an elution solution; c) adding caprylic acid to the elution solution to form a contaminant precipitate; d) removing the contaminant precipitate from the elution solution; and e) subjecting the post-precipitated elution solution to a second chromatography column, thereby purifying the protein of interest.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 11, 2020
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Ji Zheng, Jue Wang
  • Patent number: 10738107
    Abstract: The present invention provides, among other aspects, methods for the manufacture of plasma-derived immunoglobulin G compositions highly enriched for anti-brain disease related protein antibodies (e.g., anti-A?, anti-RAGE, and anti-?-synuclein antibodies). Advantageously, the methods provided do not affect the manufacturing processes or capabilities for producing plasma-derived IgG therapeutics. Plasma-derived IgG compositions that are highly enriched for anti-brain disease related protein antibodies (e.g., anti-A?, anti-RAGE, and anti-?-synuclein antibodies), as also provided here. Methods for the treatment of brain diseases and disorders by administration of plasma-derived IgG compositions highly enriched for anti-brain disease related protein antibodies (e.g., anti-A?, anti-RAGE, and anti-?-synuclein antibodies), are also provided.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: August 11, 2020
    Assignees: Baxalta Incorporated, Baxalta GmbH
    Inventors: Lucia Gnauer, Harald Arno Butterweck, Theresa Bauer, Alfred Weber, Wolfgang Teschner, Hans-Peter Schwarz
  • Patent number: 10723769
    Abstract: Provided is an affinity chromatography carrier that maintains high immunoglobulin-binding capacity and high alkali resistance. An immunoglobulin-binding protein including at least one modified immunoglobulin-binding domain, the modified immunoglobulin-binding domain being a polypeptide consisting of an amino acid sequence of an immunoglobulin-binding domain selected from the group consisting of the B domain, Z domain, C domain, and variants thereof of Staphylococcus aureus protein A, in which at least one amino acid residue is inserted between positions corresponding to the 3-position and position 4 of the amino acid sequence of the B domain, Z domain or C domain.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: July 28, 2020
    Assignees: JSR CORPORATION, JSR LIFE SCIENCES CORPORATION
    Inventors: Jun-ichi Yasuoka, Takashi Ichii, Satoshi Nakamura, Tomonori Shiotani, Kaori Itaya
  • Patent number: 10723762
    Abstract: For the removal of high molecular weight compounds from recombinantly produced polypeptides generally chromatographic methods are employed. It has been found that underivatized controlled pore glass (uCPG) selectively binds high molecular weight compounds present in a solution. The purified polypeptide can be recovered e.g. from the flow through of a chromatography column containing uCPG as chromatography material. It has been found that this effect is pronounced at a pH value of about 4 to 6 in buffered solutions. With approximately 100 m2 to 150 m2 uCPG surface per g of polypeptide almost 80% to 95% of the high molecular weight compounds are removed with a yield of 80% to 90% of polypeptide.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: July 28, 2020
    Assignee: Hoffman-La Roche Inc.
    Inventors: Stefan Hepbildikler, Wolfgang Kuhne, Eva Rosenberg, Gerhard Winter
  • Patent number: 10703809
    Abstract: Eculizumab, a humanized monoclonal antibody against C5 that inhibits terminal complement activation, showed activity in a preliminary 12-week open-label trial in a small cohort of patients with paroxysmal nocturnal hemoglobinuria (PNH). The present study examined whether chronic eculizumab therapy could reduce intravascular hemolysis, stabilize hemoglobin levels, reduce transfusion requirements, and improve quality of life in a double-blind, randomized, placebo-controlled, multi-center global Phase III trial. It has been found that eculizumab stabilized hemoglobin levels, decreased the need for transfusions, and improved quality of life in PNH patients via reduced intravascular hemolysis. Chronic eculizumab treatment appears to be a safe and effective therapy for PNH.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 7, 2020
    Assignee: Alexion Pharmaceuticals, Inc.
    Inventors: Leonard Bell, Russell P. Rother, Mark J. Evans
  • Patent number: 10696735
    Abstract: Combinations of different chromatography modalities with particularly refined conditions significantly reduce acid charge variants in a preparation of monoclonal antibodies. The process for reducing acid charge variants utilizes a combination of anion exchange and hydrophobic interaction chromatography, followed by cation exchange chromatography polishing, whereby the levels of acidic or basic charge species of the monoclonal antibodies may be modulated to a desired level.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: June 30, 2020
    Assignee: Outlook Therapeutics, Inc.
    Inventors: Chris Yonan, Christine Caroselli, Wiphusanee Dendamrongvit, Scott Gangloff
  • Patent number: 10695693
    Abstract: In certain embodiments, the invention provides a method of purifying a protein of interest from a mixture which comprises the protein of interest and one or more contaminants, said method comprising: a) subjecting the mixture to a first chromatography matrix, wherein the protein of interest binds to the first chromatography matrix; b) contacting the first chromatography matrix with a first wash solution which has a pH of at least 9.0, and does not comprise arginine or an arginine derivative; and c) eluting the protein of interest from the first chromatography matrix into an elution solution.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: June 30, 2020
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Jue Wang, Neil E. Jaffe, Krina Patel
  • Patent number: 10696734
    Abstract: Described herein is secretory IgA isolated from the intestinal luminal fluid and intestinal mucosal of animals such as pigs and cows. Also included are methods of isolating secretory IgA. The secretory IgA is useful in food compositions such as animal and human food compositions as well as pharmaceutical compositions to increase growth rate, improve feed efficiency, reduce gastrointestinal inflammation, reduce a risk of gastrointestinal infection in the animal, or a combination thereof.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: June 30, 2020
    Assignee: WISCONSIN ALUMNI RESEARCG FOUNDATION
    Inventors: Jordan Marshall Sand, Mark Eric Cook
  • Patent number: 10688412
    Abstract: A wash buffer comprising greater than 0 mM and less than about 500 mM arginine, greater than 0 mM and less than about 250 mM guanidine, greater than 0 mM and less than about 250 mM sodium chloride, and greater than 0 mM and less than about 50 mM of an anionic surfactant, or greater than 0% and less than about 0.25% w/v of a non-ionic surfactant. When used during affinity chromatography purification of a protein of interest, such as an antibody, the wash buffer significantly reduces the level of host cell proteins from the preparation. Following affinity chromatography with the wash buffer, the protein of interest may be further purified using membrane chromatography.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: June 23, 2020
    Assignee: Cehpalon, Inc.
    Inventors: Lu Wang, Tianyi Zhou, Zhaoqing Zhang, Mi Jin
  • Patent number: 10676503
    Abstract: A method for purifying a protein comprising an antibody, antibody fragment, or immunoglobulin single variable domain, from a solution containing at least one contaminant by superantigen chromatography comprising: a) adsorbing the protein to the superantigen immobilized on a solid support; b) removing the at least one contaminant by contacting the immobilized superantigen containing the adsorbed protein with a first wash buffer comprising an aliphatic carboxylate; and c) eluting the protein from the superantigen immobilized on the solid support.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 9, 2020
    Assignee: GLAXOSMITHKLINE INTELLECTUAL PROPERTY (NO.2) LIMITED
    Inventors: Kent E. Goklen, Eric J. Suda, Antonio Raul Ubiera
  • Patent number: 10662248
    Abstract: Provided herein are de novo binding domain containing polypeptides (DBDpp) that specifically bind a target of interest. Nucleic acids encoding the DBDpp, and vectors and host cells containing the nucleic acids are also provided. Libraries of DBDpp, methods of producing and screening such libraries and the DBDpp identified from such libraries and screens are also encompassed. Methods of making and using the DBDpp are additionally provided. Such uses include, without limitation, affinity purification, and diagnostic and therapeutic applications.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: May 26, 2020
    Assignees: Subdomain LLC, Arcellx, Inc.
    Inventors: David William Lafleur, David M. Hilbert
  • Patent number: 10654933
    Abstract: The present inventors discovered that additional aggregation of low-pI antibody can be suppressed by removing formed antibody aggregates after a certain period of time following Protein A column purification, acidic treatment, and neutralization. Furthermore, the present inventors found that efficient impurities removal for a low-pI antibody can be accomplished by using an anion exchange resin in the Bind/Elute mode and then a hydrophobic interaction chromatography or multimodal chromatography resin, compared with conventional methods.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: May 19, 2020
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Yasufumi Ueda, Shohei Kobayashi, Satoko Yanagita, Takuo Kawase, Masahiro Fukunaga
  • Patent number: 10647777
    Abstract: Disclosed herein are methods that have been developed to control the formation of disulfide bonds between polypeptides of a multimeric protein produced by a bioprocess. Also disclosed are protein solution parameters that allow for controlling the formation of disulfide bonds. In one example, the methods disclosed herein can be used to control the proportion of half antibody molecules in an antibody solution.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: May 12, 2020
    Assignee: GENZYME CORPORATION
    Inventors: Kevin P. Brower, Chris Hwang, Rao Koduri, Konstantin B. Konstantinov, Veena Warikoo, Marcella Yu, Jin Yin