Patents Examined by James McDonough
  • Patent number: 8784518
    Abstract: Herein are disclosed an apparatus and method for reaction injection molding of polyurethane foam. In the method, a recirculation loop containing polyols along with an effective amount of water, and a recirculation loop containing isocyanates, are each partially evacuated.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 22, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Elizabeth Anna Benson-Sargent, David R. Dow, Grady A. Dunham, Douglas E. Earl, Jeffrey P. Lenzendorf
  • Patent number: 8784585
    Abstract: A gas generator 10 includes an autoignition composition that contains an alkali metal chlorate such as potassium chlorate as an oxidizer, a carboxylic acid such as DL-tartaric acid as a fuel, and a desiccant in operable communication therewith. Gas generating systems 180 such as vehicle occupant protection systems 180, containing the gas generator 10, are also provided.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: July 22, 2014
    Assignee: TK Holdings Inc.
    Inventors: Sean P. Burns, Deborah L. Hordos, Jason Newell
  • Patent number: 8784584
    Abstract: Perchlorate-free flare compositions are disclosed which, when burned, produce yellow smoke and flames. Methods of producing the compositions are also disclosed.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: July 22, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Christina M. Yamamoto, Robert G. Shortridge
  • Patent number: 8778039
    Abstract: The invention relates to an elastically deformable composite material suitable to be processed further into sheet-like abrasive products, comprising a sheet-like supporting base coated or impregnated with a prepolymer material which obtains thermosetting properties when thermally post-cured, or consisting of a coated or impregnated supporting base, characterized in that the supporting base comprises at least one layer of bonded fibers selected among inorganic fibers and organic synthetic fibers, if necessary mixed with natural fibers. Moreover, it relates to a method for the manufacture of the composite material.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: July 15, 2014
    Assignee: Bamberger Kaliko Textile Finishing GmbH
    Inventors: Peter Klenner, Klaus Fuessmann, Waldfried Weier
  • Patent number: 8778103
    Abstract: Methods of forming energetic compositions include forming a premix comprising a nitrate ester, a polymer, and a stabilizer, and combining solids with the premix. Additional stabilizer may be added with the solids and may remain in a crystalline state. Some methods include dissolving a stabilizer in at least one of a plurality of nitrate esters. Energetic compositions include a continuous matrix and a stabilizer. The continuous matrix includes a nitrate ester and surrounds a solid energetic material. Some compositions include a first nitrate ester, a second nitrate ester having a decomposition rate lower than the first nitrate ester, and a stabilizer. An article includes a housing and an energetic composition in the housing.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 15, 2014
    Assignee: Alliant Techsystems Inc.
    Inventors: John R. Moser, Jr., Richard L. Raun, David D. Shaw
  • Patent number: 8778105
    Abstract: The invention concerns copper azide containing carbon nanotubes. The invention also concerns methods of producing such nanotubes by placing CuO nanoparticles within carbon nanotubes to produce CuO-containing carbon nanotubes, contacting CuO-containing carbon nanotubes with hydrogen to produce reduced nanotubes; and contacting the reduced nanotubes with hydrazoic acid to produce copper azide containing carbon nanotubes.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: July 15, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Yury Gogotsi, Valarie Pelletier, Farhad Forohar, Magdy Bichay
  • Patent number: 8764900
    Abstract: The present invention provides an apparatus for producing single crystals according to the Czochralski method, the apparatus including a chamber that can be divided into a plurality of chambers; at least one of the plurality of divided chambers having a circulating coolant passage in which a circulating coolant for cooling the chamber circulates; and measuring means that respectively measure an inlet temperature, an outlet temperature, and a circulating coolant flow rate of the circulating coolant in the circulating coolant passage; the apparatus further including a calculating means that calculates a quantity of heat removed from the chamber and/or a proportion of the quantity of removed heat, from the measured values of the inlet temperature, outlet temperature, and circulating coolant flow rate; and a pulling rate control means that controls a pulling rate of the single crystal based on the resulting quantity of removed heat and/or the resulting proportion of the quantity of removed heat.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: July 1, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kiyotaka Takano, Masahiko Urano, Ryoji Hoshi
  • Patent number: 8764898
    Abstract: A water-based non-permanent adhesive solution composition comprised of water, gum arabic powder, sodium benzoate, citric acid and denatured alcohol capable of being applied directly to the thumb and playing fingers for players of stringed instruments including, but not limited to, banjos, steel guitars, and Dobros. When applied to the thumb and playing fingers the solution quickly and safely binds the picks to the skin to prevent the picks from slipping or falling off during prolonged periods of play.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: July 1, 2014
    Inventors: George Wayne Hobbs, Terry Hobbs
  • Patent number: 8758461
    Abstract: An abrasive article includes a shaped abrasive particle including a body having a first height (h1) at a first end of the body defining a corner between an upper surface, a first side surface, and a second side surface, and a second height (h2) at a second end of the body opposite the first end defining an edge between the upper surface and a third side surface, wherein the average difference in height between the first height and the second height is at least about 50 microns. The body also includes a bottom surface defining a bottom area (Ab) and a cross-sectional midpoint area (Am) defining an area of a plane perpendicular to the bottom area and extending through a midpoint of the particle, the body has an area ratio of bottom area to midpoint area (Ab/Am) of not greater than about 6.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: June 24, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Doruk O. Yener, Jennifer H. Czerepinski, Sujatha Iyengar, Michael D. Kavanaugh
  • Patent number: 8747540
    Abstract: There is provided a cellulose ester film comprising at least one plasticizer and satisfying the following expressions (1) to (5); |Re|?5 nm (1); 50 nm<Rth<300 nm (2); 25 ?m?d?65 ?m (3); 1×10?3?Rth/d?4×10?3 (4); 3.8 GPa<E?<5.0 GPa (5); wherein Re represents a retardation value in an in-plane direction; Rth represents a retardation value in a thickness direction; d represents a film thickness; and E? represents an elastic modulus of the film.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: June 10, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Ryosuke Takada, Jun Takeda
  • Patent number: 8741060
    Abstract: This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: June 3, 2014
    Assignee: AMG IdealCast Solar Corporation
    Inventors: James A. Cliber, Roger F. Clark, Nathan G. Stoddard, Paul Von Dollen
  • Patent number: 8735315
    Abstract: A composition comprising a base component and a polymer, and a method of making said composition, are disclosed. The composition thereby obtained is then used as a catalyst for isoparaffin-olefin alkylation.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 27, 2014
    Assignee: UOP LLC
    Inventors: Bruce B. Randolph, Marvin M. Johnson, Glenn W. Dodwell
  • Patent number: 8728259
    Abstract: An inflator 10 is provided whereby the interstitial cavities found within the inflator 10 are packed with one or more decomposition additives 26 that decompose in the presence of heat. As such, the decomposition additives 26 fluidly and/or conductively communicate with the hot gases generated upon activation of the inflator 10. As the decomposition additive 26 decomposes, heat may be mitigated while resultant gaseous decomposition products are liberated.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 20, 2014
    Assignee: TK Holdings Inc.
    Inventors: Deborah L. Hordos, Slaven Domazet, Brian A. Mayville
  • Patent number: 8728185
    Abstract: Shaped abrasive particles comprising a ceramic and comprising a first plate integrally joined to a second plate at a predetermined angle?.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: May 20, 2014
    Assignee: 3M Innovative Properties Company
    Inventor: Negus B. Adefris
  • Patent number: 8728238
    Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 20, 2014
    Assignee: H.C. Materials Corporation
    Inventors: Pengdi Han, Jian Tian
  • Patent number: 8721813
    Abstract: Bimetallic alloys prepared in a ball milling process, such as iron nickel (FeNi), iron palladium (FePd), and magnesium palladium (MgPd) provide in situ catalyst system for remediating and degrading nitro explosive compounds. Specifically, munitions, such as, 2,4,6-trinitrotoluene (TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), nitrocellulose and nitroglycerine that have become contaminants in groundwater, soil, and other structures are treated on site to remediate explosive contamination.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: May 13, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Christian Clausen, III, Cherie Geiger, Michael Sigman, Rebecca Fidler
  • Patent number: 8709114
    Abstract: A method of manufacturing polishing layers for use in chemical mechanical polishing pads is provided, wherein a plurality of polishing layers are derived from a cake, wherein the formation of density defects in the cake and the surface roughness of the polishing layers formed are minimized.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 29, 2014
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Brian T. Cantrell, Kathleen McHugh, James T. Murnane, George H. McClain, Durron A. Hutt, Robert A. Brady, Christopher A. Young, Jeffrey Borcherdt Miller
  • Patent number: 8696809
    Abstract: A manufacturing method of an epitaxial silicon wafer is provided. The epitaxial silicon wafer includes: a substrate cut out from a silicon monocrystal that has been manufactured, doped with nitrogen and pulled up in accordance with Czochralski method; and an epitaxial layer formed on the substrate. The manufacturing method includes: cleaning a surface of the substrate with fluorinated acid by spraying onto the surface of the substrate fluorinated acid vaporized by a bubbling tank of a substrate cleaning apparatus; and forming an epitaxial layer on the cleaned surface of the substrate.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: April 15, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Kazuaki Kozasa, Kosuke Miyoshi
  • Patent number: 8696837
    Abstract: The present invention is directed to an explosive composition comprised of heavy ANFO and expanded polymeric beads that have a density that is less than the density of the heavy ANFO. The expanded polymeric beads have a size that is determined or based on the size of ammonium nitrate prills used in the heavy ANFO portion of the composition. In one embodiment, the expanded polymeric beads that are utilized in the composition are at least 70% of the lower limit of the mesh size of the predominant ammonium nitrate prill mesh size. In another embodiment, the expanded polymeric beads are at least 70% of the a size that is related to the average mesh size of the ammonium nitrate prills.
    Type: Grant
    Filed: October 10, 2010
    Date of Patent: April 15, 2014
    Inventor: Kevin H. Waldock
  • Patent number: 8696838
    Abstract: A method of manufacture of foamed celluloid molded products, involving three steps for the manufacture of higher density (0.7 to 1.25 gm/cc) foamed celluloid products or simple geometry lower density (0.2 to 0.7 gm/cc) foamed celluloid products, and four steps for the manufacture of lower density foamed celluloid products of any geometry. The three step process involving: (1) providing small, uniform, pieces of celluloid; (2) presoaking the pieces in a physical blowing agent (PBA) under pressure; and (3) foaming at raised temperature a controlled quantity of the presoaked pieces in a mold—to obtain the desired shape and density. For a lower density foamed celluloid product, of any moldable geometry, the steps are to: (1) small pieces of celluloid, that (2) have been presoaked in a PBA, are (3) pre-expanded to an intermediate density, and then (4) foam the desired lower density foamed product in a mold at raised temperature.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: April 15, 2014
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Niloufar Faridi, Linjie Zhu, Ming-Wan Young, Costas G. Gogos, Fei Shen, Elbert Caravaca, Mohamed Elalem, Viral Panchal, Dale Conti