Patents Examined by James P. Hughes
  • Patent number: 7376295
    Abstract: Disclosed are reconfigurable optical interconnections for opto-electronic processors in general, and for scalable computer architectures and scalable network servers in particular. The optical-signal interconnects are adaptable, or reconfigurable, during the normal operation of the processor. A large number of optical-signal interconnects may be provided among the components of the processor while using a small number of light transmitters and/or light receivers.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: May 20, 2008
    Assignee: Fujitsu Limited
    Inventors: Michael G. Lee, Kishio Yokouchi
  • Patent number: 7359584
    Abstract: The present invention relates to a device for use in a fiber optic system that may be a communication system, a sensing system or other system using guided-wave optical components. Reducing the number of lenses required to couple the waveguides and the free-space paths in the device offers the dual advantages of a reduced component count and simplified alignment. In an exemplary device having a first and second waveguides, a birefringent optical system defines bi-directional, polarization-dependent free-space paths. One of the bidirectional, polarization-dependent, free-space paths couples at least the first waveguide to the second waveguide. The birefringent optical system includes at least one prism for bending one of the polarization-dependent paths in a clockwise direction and one of the polarization-dependent paths in a counterclockwise direction.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: April 15, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventors: Pingfan P. Wu, Liang-Ju Lu, Zhicheng Yang, Boying Barry Zhang
  • Patent number: 7352939
    Abstract: A microbend-induced fiber grating is formed from a section of optical fiber configured to exhibit “splitting” between the resonant wavelengths supported by the TE and TM components of the LP1m mode and the resonant wavelength supported by the odd/even HE2m components of the LP1m mode. Since only the TE and TM components are polarization dependent, by splitting and shifting the resonant wavelengths for these modes away from a system-desired wavelength(s) supported by the odd/even HE modes, a polarization insensitive microbend-induced fiber grating can be formed. A fiber core configuration including a central core region, trench and ring is formed to exhibit a large radial gradient in core refractive index profile, with a significantly steep transition between the ring index and the trench index, to provide the desired splitting between the (undesired, polarization sensitive) TE/TM modes and the HE mode.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: April 1, 2008
    Assignee: Fitel USA Corp.
    Inventor: Siddharth Ramachandran
  • Patent number: 7349594
    Abstract: Bidirectional wavelength cross connects include a plurality of ports, each configured to receive an input optical signals, each input optical signal having a plurality of spectral bands. At least one of the plurality of ports is disposed to simultaneously transmit an output optical signal having at least one of the spectral bands. A plurality of wavelength routing elements are configured to selectively route input optical signal spectral bands to output optical signals.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: March 25, 2008
    Assignee: Altera Corporation
    Inventors: Edward J. Bortolini, Dirk Barthel, Robert T. Weverka, Samuel Paul Weaver, Paulo E. X. Silveira
  • Patent number: 7349619
    Abstract: A device and method of blocking customer access to a fiber optic distribution cable. A service blocker is positioned between a fiber distribution cable and a customer drop cable within a fiber optic adapter. The service blocker includes a unitary body which does not permit optical transmission between the fiber distribution cable and the customer drop cable. The service blocker includes a first end configured to be inserted within the fiber optic adapter and a second end configured receive a fiber optic cable connector. A system for mounting fiber optic cables including a service blocker positioned within a bulkhead mounted adapter between two fiber optic cables.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: March 25, 2008
    Assignee: ADC Telecommunications, Inc.
    Inventors: Ronald A. Beck, Scott C. Kowalczyk
  • Patent number: 7346257
    Abstract: The present invention provides a communication cable buffer tube having a flexural modulus ranging from about 180 kpsi to about 280 kpsi.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 18, 2008
    Assignee: Superior Essex Communications, LP
    Inventors: Jeffrey H. Mumm, Christopher W. McNutt, Jeffrey Scott Laws
  • Patent number: 7340132
    Abstract: A microbend-induced fiber grating is formed from a section of optical fiber configured to exhibit “splitting” between the resonant wavelengths supported by the TE and TM components of the LP1m mode and the resonant wavelength supported by the odd/even HE2m components of the LP1m mode. Since only the TE and TM components are polarization dependent, by splitting and shifting the resonant wavelengths for these modes away from a system-desired wavelength(s) supported by the odd/even HE modes, a polarization insensitive microbend-induced fiber grating can be formed. A fiber core configuration including a central core region, trench and ring is formed to exhibit a large radial gradient in core refractive index profile, with a significantly steep transition between the ring index and the trench index, to provide the desired splitting between the (undesired, polarization sensitive) TE/TM modes and the HE mode.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: March 4, 2008
    Assignee: Fitel U.S.A. Corp.
    Inventor: Siddharth Ramachandran
  • Patent number: 7340148
    Abstract: A method is provided for predicting an installed performance parameter of an optical fiber cable. The method includes obtaining a measurement indicative of a value of the performance parameter at a first moment in time. A measurement indicative of a value of the performance parameter at a second moment in time may then be obtained. A first correlation may then be determined between the measurement at the first moment in time and the measurement at the second moment in time. A value of the performance parameter at the second moment in time may then be estimated based upon the measurement at the first moment in time in combination with the first correlation, the first correlation being based upon observations of a manner in which the performance parameter varies over time for at least a second optical fiber.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 4, 2008
    Assignee: Verizon Business Global LLC
    Inventor: John A. Fee
  • Patent number: 7340122
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 4, 2008
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7340139
    Abstract: A microbend-induced fiber grating is formed from a section of optical fiber configured to exhibit “splitting” between the resonant wavelengths supported by the TE and TM components of the LP1m mode and the resonant wavelength supported by the odd/even HE2m components of the LP1m mode. Since only the TE and TM components are polarization dependent, by splitting and shifting the resonant wavelengths for these modes away from a system-desired wavelength(s) supported by the odd/even HE modes, a polarization insensitive microbend-induced fiber grating can be formed. A fiber core configuration including a central core region, trench and ring is formed to exhibit a large radial gradient in core refractive index profile, with a significantly steep transition between the ring index and the trench index, to provide the desired splitting between the (undesired, polarization sensitive) TE/TM modes and the HE mode.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: March 4, 2008
    Assignee: Fitel USA Corp.
    Inventor: Siddharth Ramachandran
  • Patent number: 7336855
    Abstract: A self-electrooptic effect device (“SEED”) is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: February 26, 2008
    Assignee: Sandia Corporation
    Inventor: G. Allen Vawter
  • Patent number: 7333710
    Abstract: A display includes a casing, a terminal module, and a light source. The terminal module is mounted on an exterior of the casing, and includes a terminal unit. The light source is mounted on the casing and the terminal module, and serves to illuminate the terminal unit of the terminal module.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: February 19, 2008
    Assignee: DigiMedia Technology Co., Ltd.
    Inventors: Yea-Jye Hou, Yao-Tsung Ko, Wei-Hsin Hsieh, Yeuan-Ren Moh
  • Patent number: 7333698
    Abstract: An optical scanning device including a bundle of optical fibers adapted for delivering optical energy beams therethrough, and an actuator coupled to the bundle of optical fibers adapted to bend the bundle of optical fibers in a scanning motion.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: February 19, 2008
    Assignee: Polyoptics Ltd
    Inventor: Henry M. Israel
  • Patent number: 7333709
    Abstract: A splice holder device includes a tray mountable in a telecommunications closure, the tray including a splice mounting mechanism configured to receive a splice device. The splice holder device also includes first and second fiber clamps disposed on the tray, wherein the first and second fiber clamps are each configured to releasably secure a buffered portion of an optical fiber. The tray can include a single splice device, such as a mechanical splice, mounted therein or can include a plurality of splice devices mounted therein. The splice holder device can be configured to be securedly mounted in a telecommunications enclosure.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: February 19, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: James B. Carpenter, Douglas P. Hills, Chansool Park, Donald K. Larson, Paul N. Winberg
  • Patent number: 7330619
    Abstract: An optical apparatus comprises: a waveguide substrate; three planar optical waveguides formed on the substrate, each comprising a transmission core and cladding; a laser positioned to launch its optical output to propagate along the first waveguide; a photodetector positioned to receive an optical signal propagating along the second waveguide; and means formed on the substrate for i) transferring a first fraction of laser optical output propagating along the first waveguide to the second waveguide, and ii) transferring a second fraction of the laser optical output propagating along the first waveguide to the third waveguide. The transferring means may comprise: i) a pair of parallel spaced-apart tap core segments; ii) a branched splitter core; or iii) a lateral splitter core.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: February 12, 2008
    Assignee: HOYA Corporation USA
    Inventors: David W. Vernooy, Joel S. Paslaski
  • Patent number: 7324719
    Abstract: A method of tuning optical components integrated on a monolithic semiconductor chip having a plurality of first optical components integrated on the chip with each fabricated to approximate an emission wavelength along a given wavelength grid and together forming a first optical component wavelength grid. A second optical component is integrated on the chip with and optically coupled to the group of first optical components. The second optical component has a second optical component wavelength grid approximating the given wavelength grid where at least one emission peak along the second optical component wavelength grid is within an acceptable wavelength tolerance range of a particular first optical component of the first optical component wavelength grid but not the same as a corresponding emission wavelength of a particular first optical component.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: January 29, 2008
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Charles H. Joyner, David F. Welch, Robert B. Taylor, Alan C. Nilsson
  • Patent number: 7317848
    Abstract: An optical switch in which the adverse effect of heating can be restrained is realized.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: January 8, 2008
    Assignee: Yokogawa Electric Corporation
    Inventors: Shinji Iio, Masayuki Suehiro, Shin-ichi Nakajima, Yoshiyuki Asano, Chie Sato, Akira Miura, Tsuyoshi Yakihara, Shinji Kobayashi, Sadaharu Oka
  • Patent number: 7310473
    Abstract: A light concentrator for an optical antenna gradually narrows from the light receiving end to the end in contact with a light detector, and has a refractive index that gradually increases from the first to the second end, to afford a greater acceptance angle for the incoming optical signal. The increase may occur in stages of corresponding layers of the light concentrator, the layers being arranged in order of increase in refractive index from the first end to the second end.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: December 18, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Hee Kim, Jong-Hwa Lee, Ji-Eun Keum, Jae-Yeon Song, Se-Youn Lim, Yoon-Sun Lee, Seo-Won Kwon
  • Patent number: 7306377
    Abstract: An optical sub-assembly includes a circuit and one or more electronic components electrically connected to the circuit. One of the electronic components is an optoelectronic device capable of transmitting or receiving light signals. Mounted to a surface of the optoelectronic device is an optical conduit. A first end of the optical conduit mounts to the optoelectronic device and a second end optionally cooperates with an optical component, such as a lens. The optical conduit channels light signals propagating toward or away from the optoelectronic device, while the optical component focuses or collimates such light signals. Securing the optical conduit relative to the optoelectronic device is a protective material such as a resin, epoxy, or other suitable material.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: December 11, 2007
    Assignee: Finisar Corporation
    Inventor: Thomas Lee Ellison
  • Patent number: 7306378
    Abstract: An electrical-optical coupling device. An apparatus according to an embodiment of the present invention includes a first trench defined in a first semiconductor substrate. A first reflector is defined at a first end of the first trench in the first semiconductor substrate. The first reflector is angled with respect to an axis of the first trench. A first optical fiber is disposed in the first trench at a second end of the first trench. An optical source is mounted to the first semiconductor substrate proximate to the first trench. The optical source is optically coupled to the first optical fiber via the first reflector.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: December 11, 2007
    Assignee: Intel Corporation
    Inventors: Andrew C. Alduino, Mario J. Paniccia