Patents Examined by James Phan
  • Patent number: 8928962
    Abstract: An optical device includes a base made of silicon and including a movable portion provided with a light reflecting portion having light reflectivity and capable of oscillating around a oscillation axis, at least one connection portion that extends from the movable portion, and a support portion that supports the connection portion, and a stray light suppression layer provided on a surface of the base and having a function of suppressing light reflection. In a plan view in which the base is viewed in a thickness direction thereof, the stray light suppression layer is provided on portions other than an edge of the connection portion, an edge that connects an edge of the movable portion to the edge of the connection portion, and an edge that connects an edge of the support portion to the edge of the connection portion.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: January 6, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Yasushi Mizoguchi
  • Patent number: 8928963
    Abstract: Provided is a light-scanning device may be designed to have a high resonance frequency and a large scanning angle. A mirror unit vibrates by using an arbitrary straight line as a rotation axis. A pair of first beam portions are disposed on a straight line that is parallel to the rotation axis, and support the mirror unit. A pair of second beam portions are disposed so as to be line-symmetrical to the pair of the first beam portions about the rotation axis as an axis of symmetry, and support the mirror unit. A pair of first arm portions respectively support the pair of first beam portions. A pair of second arm portions respectively support the pair of second beam portions. A pair of third beam portions support the mirror unit between the first beam portions and the second beam portions.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: January 6, 2015
    Assignee: JVC Kenwood Corporation
    Inventor: Takayuki Iseki
  • Patent number: 8922863
    Abstract: An optical scanning device separately scanning plural scan target surfaces in a first direction with light includes: a light source unit configured to emit first and second light beams mutually different in polarization state; an optical deflector configured to rotate around an axis parallel to a second direction perpendicular to the first direction, and deflect the emitted light beams; an imaging optical element provided on respective optical paths of the deflected light beams; a polarization adjustment element provided on the optical paths of the light beams transmitted through the imaging optical element, and configured to correct respective changes in polarization state of the light beams occurring during the transmission of the light beams through the imaging optical element; and a polarization separation element provided on the optical paths of the light beams emitted from the polarization adjustment element, and configured to separate the light beams from each other.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 30, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Toshiaki Tokita, Nobuaki Kubo, Naoto Watanabe, Kohji Sakai
  • Patent number: 8922859
    Abstract: A method of assembling a light source comprises the steps of inserting multiple lead wires of a light emitting element into an insertion hole formed in a circuit board from one side of the circuit board at once, striking tips of the multiple lead wires with corresponding multiple guides formed on a circumference of a pressing device serving as a jig from the other side of the circuit board, moving the pressing device toward the one side from the other side of the circuit board, and in a first stage guiding the multiple lead wires to corresponding terminals formed in an inner wall of the insertion hole of the circuit board, respectively.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: December 30, 2014
    Assignee: Ricoh Company, Ltd.
    Inventor: Shuji Takamatsu
  • Patent number: 8922861
    Abstract: In a two-dimensional optical deflector apparatus comprising an optical deflector and a driver for driving the optical deflector, the optical deflector includes a mirror, a first piezoelectric actuator for rocking the mirror with respect to a first axis of the mirror, and a second piezoelectric actuator of a meander type for rocking the mirror with respect to a second axis of the mirror perpendicular to the first axis. The driver generates a curved-type saw-tooth drive voltage and applies the curved-type saw-tooth drive voltage to the second piezoelectric actuator.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: December 30, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Takaaki Koyama
  • Patent number: 8917432
    Abstract: The present disclosure is directed to an illumination system. The illumination system may include a base member rotatable about a rotation axis and a plurality of mirrors disposed on an outer surface of the base member along a perimeter of the base member. The mirrors may be oriented at a predetermined angle. The illumination system also includes at least two illumination sources. Each of the mirrors of the first plurality of mirrors is configured to receive radiation from the first illumination source at a first portion of each mirror at a first time. The mirror is configured to reflect the radiation to an optical path. Each of the mirrors is further configured to receive radiation from the second illumination source at a second portion of the mirror at a second time. The mirrors reflect the radiation from the second illumination source to the common optical path.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: December 23, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Daniel Wack, Daimian Wang, Karl R. Umstadter, Ed Ma, Frank Chilese
  • Patent number: 8913313
    Abstract: A scanning optical apparatus includes: a light source; a light deflector configured to deflect the light beam from the light source in a main scanning direction; an incident optical system disposed between the light source and the light deflector and configured to render the light beam from the light source nearly parallel in the main scanning direction and to converge the light beam in a sub-scanning direction to bring the light beam to a focus in proximity to the light deflector; and a scanning lens configured to focus the light beam deflected by the light deflector onto a target surface to form spot-like images. The incident optical system includes one or more lenses which provide at least one refracting surface and at least one diffraction surface, and ?nS/?ds<0 is satisfied, where ?nS is a refractive power in the sub-scanning direction and ?dS is a diffraction power in the sub-scanning direction.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: December 16, 2014
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Yoshifumi Nakamura, Hitoshi Fujino, Hidetaka Hoshino
  • Patent number: 8908250
    Abstract: A MEMS mirror device includes a semiconductor substrate, a mirror provided on the semiconductor substrate, a first cavity, a second cavity, and a frame portion to define the first cavity and the second cavity. The semiconductor substrate further includes a swing portion formed just above the first cavity to support the mirror, a straight beam provided just above the first cavity to extend between the frame portion and the swing portion, a comb-teeth-like fixed electrode, and a comb-teeth-like movable electrode, the movable electrode meshing with the fixed electrode with a gap left therebetween, the swing portion configured to swing about the beam as a swing axis in response to movement of the movable electrode.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: December 9, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Goro Nakatani
  • Patent number: 8908256
    Abstract: An optical probe includes a laser light source that emits laser light, a collimator lens that converts the laser light into parallel light, a light shape changing section that converts the parallel light into linear laser light, an irradiating section to irradiate an object with a selected part of the linear laser light, an image pickup section that picks up an image of the object based on the laser light reflected from the object, and a controller that controls irradiation of the linear laser light. The linear laser light is composed of a plurality of parts including one end part and the other end part; and the irradiating section irradiates the object with the parts of the linear laser light sequentially from the one end part to the other end part.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 9, 2014
    Assignee: Mitutoyo Corporation
    Inventors: Masaoki Yamagata, Kentaro Nemoto
  • Patent number: 8902485
    Abstract: A contrast enhancing system is provided comprising: a digital micromirror device (DMD); a light source; a first integrator that receives light from the light source, comprising lateral long and short dimensions, the lateral short dimension at a non-zero angle to the DMD tilt axis; a second integrator that receives and shapes light from the first integrator; a telecentric lens about midway between the integrators that generates fast and slow f-number directions of the light in angle space, respectively corresponding to the lateral long and short dimensions of the first integrator, the slow f-number direction correspondingly at the non-zero angle to the DMD tilt axis, thereby increasing dead-zones between adjacent ones of a DMD illumination path and DMD reflection paths for each of the on, flat and off-state positions; and, at least one optical component that focuses the light along the illumination path from the second integrator onto the DMD.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: December 2, 2014
    Assignee: Christie Digital Systems USA, Inc.
    Inventors: Mark Bird, John Domm
  • Patent number: 8896897
    Abstract: A micromechanical component has a light window; a mirror element adjustable with respect to the light window from a first position into at least one second position about at least one axis of rotation, an optical sensor having a detection surface designed to ascertain a light intensity on the detection surface and to provide a corresponding sensor signal. The light window, the mirror element in the first position and the detection surface are situated in relation to one another in such a way that a portion of a light beam reflected on the light window strikes the detection surface at least partially; and an evaluation unit designed to define, on the basis of the sensor signal, information regarding an instantaneous position of the mirror element and/or an instantaneous intensity of the deflected light beam.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: November 25, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Pinter, Joerg Muchow, Joachim Fritz, Christoph Friese
  • Patent number: 8896899
    Abstract: A laser marker/pointer for projecting circular or elliptical laser beam patterns onto a target surface such as a portion of a presentation screen or to assist in the aiming of a firearm, comprises a handheld shell body in which is mounted a laser light source, a rotating optical mirror driven by a motor, and an electronic drive circuit, whereby the aspect ratio of the marking pattern is determined by the geometric relationship of the motor shaft axis, the laser beam, and the mirror surface. The motor drive circuit when initially powered (along with the laser diode), applies full power (a continuous DC voltage to the motor to overcome inertia), followed by a pulsed voltage to lower the duty cycle of the motor, increase battery life, and reduce rotational noise.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: November 25, 2014
    Inventor: Zhen Tang
  • Patent number: 8891149
    Abstract: Disclosed herein is a dielectric microstructure with a substantially unit dielectric constant K for use in microelectromechanical systems.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: November 18, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Larry J. Hornbeck
  • Patent number: 8876303
    Abstract: In a lens barrier device, one barrier blade is arranged at a different height in the optical axis direction from another barrier blade, and a barrier base is provided with a regulating portion which is at the outer peripheral portion of an optical axis forward end side barrier blade and which regulates the position in the optical direction of the optical axis forward end side barrier blade, thus forming the lens barrier device as a unit. If rotation shafts for the barrier blades are formed on an external cover, deformation or the like would be generated when the external cover is assembled to the apparatus, resulting in an increase in the requisite drive force for the opening/closing operation. Hence, it is possible to prevent a suitable opening/closing operation from being hindered by such an increase in the requisite drive force.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: November 4, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shinnosuke Torii
  • Patent number: 8873124
    Abstract: A plastic optical element for focusing light to a target includes a first lens and a second lens. The first lens includes an incident surface, a projection surface opposite the incident surface, and a non-optical surface through which light does not pass and that includes a non-transfer portion. At least one light beam passes from the incident surface to the projection surface. The second lens includes an incident surface, a projection surface opposite the incident surface, and a non-optical surface through which light does not pass and that includes a non-transfer portion disposed opposite the non-optical surface of the first lens. At least one light beam passes from the incident surface to the projection surface. The non-transfer portions of the first lens and the second lens are portions on which no surface is transferred from a surface of a mold used to form the plastic optical element.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: October 28, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Go Takahashi, Eiichi Hayashi, Akio Hirano, Takamichi Ohta, Kan Aoki
  • Patent number: 8861059
    Abstract: A method and apparatus of driving a motor in a light scanning arrangement. The method includes the following steps: (1) driving a drive coil with a drive signal to oscillate a scan mirror and a light beam reflected from the scan mirror; (2) generating a feedback signal having zero crossings during oscillation of the scan mirror by a feedback coil in proximity to the drive coil; (3) integrating the feedback signal to generate an integrated feedback signal; and (4) processing the integrated feedback signal to generate a periodic drive signal that has the same time period as the feedback signal.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: October 14, 2014
    Assignee: Symbol Technologies, Inc.
    Inventors: James Giebel, Peter Fazekas
  • Patent number: 8861062
    Abstract: A Micro Electro Mechanical Systems (MEMS) device comprising: a rotor, comprising a first plurality of rotor teeth and a second plurality of rotor teeth, formed in at least two layers of silicon-on-insulator (SOI) substrate, wherein each rotor tooth belonging to the first plurality of rotor teeth is formed in a first layer and each rotor tooth of the second plurality of rotor teeth is formed in a second layer; and a stator comprising a first plurality of stator teeth and a second plurality of stator teeth, formed in at least two layers of SOI substrate, wherein each stator tooth belonging to the first plurality of stator teeth is formed in a first layer, and each stator tooth of the second plurality of stator teeth is formed in a second layer.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: October 14, 2014
    Assignee: STMicroelectronics International N.V.
    Inventors: Sason Sourani, Moshe Medina
  • Patent number: 8854711
    Abstract: The present disclosure describes, among other things, a reduced speckle contrast microelectromechanical system. One exemplary embodiment includes micromechanical structures configured to form a uniform reflective surface on a substrate, an elastic substance coupled to the substrate, and an energy source that applies a voltage to the elastic substance to alter the shape of the surface of the substrate, for example, by about 10% to about 25% of a wavelength of light projected onto the substrate at a frequency of at least 60 Hz. Another exemplary embodiment includes micromechanical structures formed on a surface of a substrate, a reflective diaphragm connected to the substrate, an elastic substance coupled to the diaphragm, and an energy source that applies a voltage to the elastic substance to vibrate the diaphragm at a frequency of at least 60 Hz.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: October 7, 2014
    Assignee: Mezmeriz, Inc.
    Inventor: Shahyaan Desai
  • Patent number: 8842354
    Abstract: A display substrate includes a base substrate, a micro shutter, a first driving electrode, a second driving electrode, and a plurality of anchors. The micro shutter includes a flat portion having at least one opening, a main concave portion adjacent to the opening and extending in from the flat portion to a first depth, and at least one sub-concave portion extending in from a bottom surface of the main concave portion to second depth. The first driving electrode is connected to a first side of the micro shutter. The second driving electrode is connected to a second side of the micro shutter. The second side is positioned opposite to the first side. The anchors fix the first and second driving electrodes on the base substrate.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: September 23, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun-Min Cho, Sung-Sik Yun, Jae-Byung Park, Don-Chan Cho, Dae-Hyun Kim, Seon-Tae Yoon
  • Patent number: 8837027
    Abstract: An optical scanning device includes: a light source including a plurality of light-emitting elements; a deflector that defects light beams output from the light source; a scanning optical system that condenses the light beams deflected on the deflector onto a surface to be scanned, and includes at least one resin scanning lens and at least one folding mirror disposed behind the at least one resin scanning lens; a light-receiving element to which part of the light beams, which is deflected on the deflector but not used for scanning the surface, enters not via the at least one folding mirror as light-amount monitoring light beams; and a controller that controls a driving signal for the light-emitting elements based on an output signal from the light-receiving element.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: September 16, 2014
    Assignee: Ricoh Company, Limited
    Inventor: Hibiki Tatsuno