Patents Examined by James R Hulka
  • Patent number: 11143750
    Abstract: The present disclosure describes calibration methods for optoelectronic modules with active illumination, such as 3D ranging systems. Calibration methods include determining cross-talk calibration parameters for an optoelectronic module having an emitting channel and a receiving channel where the optoelectronic module is operable to demodulate modulated light incident on the receiving channel. Cross-talk calibration parameters are saved to a readable storage medium and recalled during distance measurements to an object or objects in a scene.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: October 12, 2021
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Miguel Bruno Vaello Paños, Javier Miguel Sánchez, Cassian Strässle, Liming Chen
  • Patent number: 11143751
    Abstract: An ultrasonic sensing system includes: an amplifier including an input and an output; and an n-level comparator, coupled to the output of the amplifier, to compare an adjustable threshold voltage to an output signal from the output of the amplifier. N is greater than or equal to 1. The system also includes a noise power estimator, coupled to an output of the n-level comparator, to generate a noise power signal indicative of noise power of an input signal at the input of the amplifier. The system further includes a time-varying threshold circuit, coupled to the noise power estimator and the n-level comparator, to adjust the adjustable threshold voltage based on the noise power signal.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: October 12, 2021
    Inventors: Lei Ding, Srinath Mathur Ramaswamy
  • Patent number: 11137480
    Abstract: Methods and systems for performing multiple pulse LIDAR measurements are presented herein. In one aspect, each LIDAR measurement beam illuminates a location in a three dimensional environment with a sequence of multiple pulses of illumination light. Light reflected from the location is detected by a photosensitive detector of the LIDAR system during a measurement window having a duration that is greater than or equal to the time of flight of light from the LIDAR system out to the programmed range of the LIDAR system, and back. The pulses in a measurement pulse sequence can vary in magnitude and duration. Furthermore, the delay between pulses and the number of pulses in each measurement pulse sequence can also be varied. In some embodiments, the multi-pulse illumination beam is encoded and the return measurement pulse sequence is decoded to distinguish the measurement pulse sequence from exogenous signals.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: October 5, 2021
    Inventors: David S. Hall, Pieter J. Kerstens
  • Patent number: 11137508
    Abstract: The present invention describes a mechanical coupling microseismic monitoring system, which includes at least one microseismic sensor, push rods that are arranged at both ends of the microseismic sensor through a first connection mechanism to send the microseismic sensor into the monitoring hole, introduction mechanisms that are mounted on the push rods for introducing the microseismic sensor into the monitoring hole, and one microseismic monitoring computer that receives signals from the microseismic sensor; the microseismic sensor is a recoverable microseismic sensor; the first connection mechanism is a connection mechanism that can make the push rod swing relative to the microseismic sensor; the introduction mechanism is a three-roller introduction mechanism. The present invention meets the requirement of microseismic monitoring for different parts of deep monitoring hole using multiple microseismic sensors.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: October 5, 2021
    Inventors: Dewen Zheng, Zhide Wu, Guosheng Ding, Huayin Zhu, Jianfeng Liu, Lina Ran, Tong Lin
  • Patent number: 11137494
    Abstract: Distance-detection system includes a signal-generator configured to provide a drive signal and an ultrasound transducer having at least one ultrasonic element. The ultrasound transducer is configured to transmit a pulse of sound waves and detect reflected sound waves. The distance-detection system also includes a receiver configured to receive a detection signal from the ultrasound transducer. The detection signal includes a reverberation component representing reverberation of the ultrasound transducer and a reflected component representing reflected sound waves from the interface. The receiver is configured to receive a drive-cancellation signal that is inverted with respect to the reverberation component of the detection signal. The receiver is configured to determine a time-of-flight measurement based on the detection signal in which the reverberation component of the detection signal is reduced by the drive-cancellation signal.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: October 5, 2021
    Inventor: Minoru Toda
  • Patent number: 11131772
    Abstract: Provided are a LiDAR device and a method of operating the LiDAR device. The LiDAR device includes a light-emitting unit configured to emit modulated light onto an object, a light-receiving unit configured to receive the modulated light reflected by the object, a computation unit configured to calculate a distance to the object based on a reception signal of the modulated light provided by the light-receiving unit, a modulation unit configured to provide a modulation signal to the light-emitting unit to generate the modulated light, and a controller configured to control operations of at least one of the light-emitting unit, the light-receiving unit, the computation unit, and the modulation unit.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 28, 2021
    Inventors: Heesun Yoon, Jungwoo Kim, Tatsuhiro Otsuka, Inoh Hwang
  • Patent number: 11125865
    Abstract: Airborne LiDAR bathymetry systems and methods of use are provided. The airborne LiDAR bathymetry system can collect topographic data and bathymetric data at high altitudes. The airborne LiDAR bathymetry system has a receiver system, a detector system, and a laser transmission system.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: September 21, 2021
    Assignee: Woolpert, Inc.
    Inventors: Nathan Lee Hopper, Joseph R. Seppi, Rodney Ross Faulkner, II, Mark Douglas Smits, II, JoongYong Park, Mark Stephen Millman, Eric Josef Cahoon, Christopher T. Cotton, Joshua Gluckman, Alexander Cheff Halterman, Grady Tuell, Andrew Wallace Stark, John Henry Gerhard, William Jeffrey Lillycrop
  • Patent number: 11119198
    Abstract: A light-based detection system includes a light source configured to emit light as a series of one or more light pulses, a transmitter configured to direct the one or more light pulses toward a remote target located a distance from the system, a receiver configured to detect a light pulse scattered by the remote target, and a controller. The pulses are at a wavelength between approximately 1400 nanometers and approximately 1600 nanometers, with pulse duration between 10 picoseconds and 20 nanoseconds and a pulse energy less than 2 microjoules. The controller is configured to determine the distance from the system to the target based on a time of flight for the detected light pulse, detect a fault condition indicating that the distance to the target is less than a threshold distance, and shut down the light source in response to detecting the fault condition.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 14, 2021
    Assignee: Luminar, LLC
    Inventors: Scott R. Campbell, Jason M. Eichenholz
  • Patent number: 11119194
    Abstract: An emission lens shapes laser light from a laser light source. A scanning mirror changes its posture and reflects the laser light toward an outside. A scanning substrate controls the posture of the scanning mirror. A light receiving device on a light receiving substrate receives the light reflected on a target. A light receiving lens condenses the reflected light on the light receiving device. A housing houses the light source substrate, the emission lens, the scanning mirror, the scanning substrate, the light receiving substrate, and the light receiving lens. An innermost member is one of the emission lens, the scanning mirror, and the light receiving lens having an end portion on an innermost side of the housing in a depth direction. The light source substrate, the scanning substrate, and the light receiving substrate do not overlap with the innermost member in the depth direction of the housing.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: September 14, 2021
    Inventor: Masashi Isono
  • Patent number: 11112502
    Abstract: In conventional laser radar systems, the wind velocity measurement accuracy cannot be improved without changing their time gate widths, which is a problem. A laser radar system according to the present invention includes: an optical oscillator to perform laser light oscillation; an optical modulator to modulate the laser light by oscillation of the optical oscillator; an optical antenna to emit the laser light modulated by the optical modulator into the atmosphere and to receive scattered light from an irradiated target as reception light; an optical receiver to perform heterodyne detection on the reception light received by the optical antenna; and a signal processor to calculate a spectrum of a reception signal obtained by the optical receiver's performing heterodyne detection, to decompose the spectrum using signal-to-noise ratios, and to calculate a velocity of an irradiated target from a decomposed spectrum.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: September 7, 2021
    Inventors: Nobuki Kotake, Shumpei Kameyama
  • Patent number: 11114490
    Abstract: Disclosed is a light receiving element including an on-chip lens, a wiring layer, and a semiconductor layer disposed between the on-chip lens and the wiring layer. The semiconductor layer includes a photodiode, a first transfer transistor that transfers electric charge generated in the photodiode to a first charge storage portion, a second transfer transistor that transfers electric charge generated in the photodiode to a second charge storage portion, and an interpixel separation portion that separates the semiconductor layers of adjacent pixels from each other, for at least part of the semiconductor layer in the depth direction. The wiring layer has at least one layer including a light blocking member. The light blocking member is disposed to overlap with the photodiode in a plan view.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: September 7, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Yoshiki Ebiko, Koji Neya, Takuya Sano
  • Patent number: 11105908
    Abstract: Systems and methods of near surface imaging and hazard detection with increased receiver spacing are provided. The system includes: a first string of one or more acoustic sources, a second string of one or more acoustic sources opposite the first string, a first one or more hydrophones mounted within a predetermined distance of the first string, and a second one or more hydrophones mounted within the predetermined distance of the second string. The first one or more hydrophones records an acoustic shot generated from the first string. The second one or more hydrophones records the acoustic shot and acoustic reflections corresponding to the acoustic shot. The system generates an image from the recorded acoustic shot and the acoustic reflections.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: August 31, 2021
    Assignee: MAGSEIS FF LLC
    Inventor: Carsten Udengaard
  • Patent number: 11105898
    Abstract: A system and method for adaptively illuminating a volume with an illumination system that illuminates a volume of interest using separately controllable near field and far field optimized illumination sources, to maintain an irradiance pattern criteria in the volume, where that criteria may be different for a far field portion of the volume than for a near field portion of the volume.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: August 31, 2021
    Assignee: Symbol Technologies, LLC
    Inventors: Vladimir Gurevich, Peter Fazekas, David T. Shi
  • Patent number: 11105925
    Abstract: A light ranging system can include a laser device and an imaging device having photosensors. The laser device illuminates a scene with laser pulse radiation that reflects off of objects in the scene. The reflections can vary greatly depending on the reflecting surface shape and reflectivity. The signal measured by photosensors can be filtered with a number of matched filter designed according to profiles of different reflected signals. A best matched filter can be identified, and hence information about the reflecting surface and accurate ranging information can be obtained. The laser pulse radiation can be emitted in coded pulses by allowing weights to different detection intervals. Other enhancements include staggering laser pulses and changing an operational status of photodetectors of a pixel sensor, as well as efficient signal processing using a sensor chip that includes processing circuits and photosensors.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 31, 2021
    Assignee: OUSTER, INC.
    Inventors: Angus Pacala, Mark Frichtl
  • Patent number: 11099455
    Abstract: An optical beam steering device may include a tunable laser diode configured to emit laser beams and an antenna that includes a grating structure and is configured to convert the laser beams to a linear light source based on the grating structure. The tunable laser diode may emit a first laser beam having a first wavelength, and emit a second laser beam having a second wavelength, the second wavelength different from the first wavelength. The antenna may receive the first laser beam and, in response, output a first linear light source having a first emission angle with a surface of the antenna. The antenna may further receive the second laser beam and, in response, output a second linear light source having a second emission angle with the surface of the antenna, the second emission angle different from the first angle.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: August 24, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Jae Shin, Seong Gu Kim, Yong Hwack Shin, Chang Gyun Shin, Dong Sik Shim, Chang Bum Lee, Jung Ho Cha, Kyoung Ho Ha
  • Patent number: 11097433
    Abstract: A robotic device comprising a long-range sonar assembly configured to detect objects between 1000 mm to 9500 mm from the long range sonar assembly. The long-range sonar assembly comprises a flared bell housing and a transducer. The robotic device also comprises a transportation mechanism configured to move the robotic device in various directions in response to instructions from a processing device that is in communication with the ling-range sonar assembly and the transportation mechanism. The processing device may cause the long-range sonar assembly to, via the transducer transmit one or more pulses and receive the one or more pulses as echo pulses having reflected off an object in an environment. The processing device may then cause a transmitter to transmit instructions to the transportation mechanism to move the robotic device in the environment based on the received one or more pulses.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 24, 2021
    Assignee: Diversey, Inc.
    Inventors: Stephen J. Balas, Ralph C. McCann, III
  • Patent number: 11092679
    Abstract: Laser light pulses of at least two different wavelengths are reflected off a scanning mirror. A first time-of-flight distance measurement circuit receives reflected light pulses of a first wavelength and determines distances. A second time-of-flight distance measurement circuit receives reflected light pulses of a second wavelength and determines distances. The timing of transmission of laser light pulses of differing wavelengths are adjusted, and the data buffering of converted return pulses are adjusted, to compensate for laser light source misalignment.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: August 17, 2021
    Assignee: Microvision, Inc.
    Inventors: Henry J. Baron, Phillip R. Kent
  • Patent number: 11086002
    Abstract: An ultrasound method and apparatus can include: transducer elements arranged in a sub-array for generating analog signals based on a return signal detected by the transducer elements during a receive interval; analog delay lines including individual delays unique to each of the transducer elements and calculated based on a linear delay slope for delaying the analog signals; an analog to digital converter for converting the analog signals to a digital signal; a digital beamformer with a digital delay based on one portion of the linear delay slope for delaying the digital signal; and a profile control register containing depth bits corresponding to multiple points for updating the linear delay slope during the receive interval to adjust for the multiple points within an image line.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 10, 2021
    Assignee: Maxim Integrated Products, Inc.
    Inventor: John Frank Scampini
  • Patent number: 11079490
    Abstract: A survey system including a multibeam echo sounder having a single projector array and a single hydrophone array constructs a multi-signal message and deconstructs a corresponding multi-signal echo to substantially simultaneously perform multiple survey missions.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: August 3, 2021
    Assignee: R2SONIC, LLC
    Inventors: Jens Steenstrup, Christopher Tiemann, Mark Chun, Kirk Hobart
  • Patent number: 11067693
    Abstract: System, methods, and other embodiments described herein relate to calibrating a light detection and ranging (LiDAR) sensor with a camera sensor. In one embodiment, a method includes controlling i) the LiDAR sensor to acquire point cloud data, and ii) the camera sensor to acquire an image. The point cloud data and the image at least partially overlap in relation to a field of view of a surrounding environment. The method includes projecting the point cloud data into the image to form a combined image. The method includes adjusting sensor parameters of the LiDAR sensor and the camera sensor according to the combined image to calibrate the LiDAR sensor and the camera sensor together.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: July 20, 2021
    Assignee: Toyota Research Institute, Inc.
    Inventors: Jeffrey M. Walls, Ryan W. Wolcott