Patents Examined by Jared Shapiro
  • Patent number: 8686219
    Abstract: The present invention is in the field of plant breeding and disease resistance. More specifically, the invention includes methods for assaying a location to determine the amount of pest infestation, or assaying a plant for its ability to resist infection, and using this information to make agronomic treatment and/or breeding decisions. The invention also provides methods for breeding cotton plants containing one or more quantitative trait loci that are associated with resistance to reniform nematode infection. The invention further includes germplasm and the use of germplasm containing quantitative trait loci (QTL) conferring reniform resistance as a source of reniform resistant alleles for introgression into elite germplasm in a breeding program, thus producing novel elite germplasm comprising one or more reniform resistance loci.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: April 1, 2014
    Assignee: Monsanto Technology LLC
    Inventors: Muhammad Bhatti, Roy G. Cantrell, Bill L. Hendrix, Patsy L. Kohlfeld, Kunsheng Wu, Jinhua Xiao
  • Patent number: 8680366
    Abstract: The present invention provides a novel method for the transduction and/or transfection of plant cells. Cell-penetrating peptides (CPPs) have been successfully employed as nanocarriers to deliver proteins and oligonucleotides to single plant cell microspores as well as multi-cellular zygotic embryos. The efficiency of CPP internalization and further delivery of a macromolecular cargo comprising a protein and/or an oligonucleotide can be enhanced by permeabilization of the zygotic embryos.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: March 25, 2014
    Assignee: Agriculture and Agri-Food Canada
    Inventors: Francois Eudes, Archana Chugh
  • Patent number: 8669417
    Abstract: The invention provides methods and compositions for increasing the efficiency of genetic transformation of host cells, including plant cells, and other eukaryotic cells, by reducing the expression of a polypeptide active in a pathway, such as the NHEJ pathway, for repairing damage to the cellular genome. In certain embodiments, the polypeptide is active in repairing double strand breaks (DSB's) of a cellular genome, and may include XRCC4, KU70, KU80, the DNA-activated Protein Kinase (DNA-Pkcs), and ATM. Methods for enhancing the resistance of plant cells to Crown Gall disease are also provided. In another aspect, genetic regulatory elements are provided, including an XRCC4 promoter.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 11, 2014
    Assignee: The Samuel Roberts Noble Foundation, Inc.
    Inventors: Zarir E. Vaghchhipawala, Kirankumar Mysore
  • Patent number: 8669423
    Abstract: The invention provides a new Squash Leaf Curl Virus (SLCV) resistant gene slc-2 in cucurbit plants and plants comprising the slc-2 gene. The invention also provides molecular markers linked to slc-2 gene. The invention further provides methods of breeding to produce plants that are resistant to SLCV, and the resistant plants produced by such methods.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: March 11, 2014
    Assignee: Vilmorin & Cie
    Inventors: Ted Superak, Julie Fauve, Eric Lionneton, Maria Petronella Christina Sengers
  • Patent number: 8669413
    Abstract: The invention provides methods of detecting MeSMV; methods of screening plants for resistance or susceptibility to MeSMV; and methods of breeding to produce plants that are resistant to MeSMV; and to the resistant plants produced by such methods.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: March 11, 2014
    Assignee: HM.Clause, Inc.
    Inventor: Ted Superak
  • Patent number: 8669414
    Abstract: The present invention is in the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding soybean plants containing quantitative trait loci that are associated with resistance to Asian Soybean Rust (ASR), a fungal disease associated with Phakopsora spp. The invention further includes germplasm and the use of germplasm containing quantitative trait loci (QTL) conferring disease resistance for introgression into elite germplasm in a breeding program for resistance to ASR.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: March 11, 2014
    Assignee: Monsanto Technology LLC
    Inventors: George J. Baley, Vergel C. Concibido, Bradley J. La Vallee
  • Patent number: 8664473
    Abstract: The invention relates to alfalfa plants and lines having aluminum tolerance. The invention also relates to parts of alfalfa plants from lines having aluminum tolerance, including seeds capable of growing aluminum tolerant alfalfa plants. Methods for the use and breeding of aluminum tolerant alfalfa plants are also provided.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: March 4, 2014
    Assignee: The Samuel Roberts Noble Foundation, Inc.
    Inventors: Dong-Man Khu, Rafael Reyno, E. Charles Bummer, Joseph H. Bouton, Maria J. Monteros
  • Patent number: 8653327
    Abstract: Methods for introducing a linear nucleic acid molecule of interest into a cell comprising a cell wall include use of nanoparticles coated with polyethylene glycol. In some embodiments, the cell comprising a cell wall is a plant cell. Methods include genetically or otherwise modifying plants and for treating or preventing disease in plant cells comprising a cell wall. Transgenic plants include a nucleic acid molecule of interest produced by regeneration of whole plants from plant cells transformed with linear nucleic acid molecules.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: February 18, 2014
    Assignee: Agrigenetics, Inc.
    Inventors: Narasimha C. Samboju, Kerrm Y. Yau, Frank Burroughs, Jayakumar P. Samuel, Steven R. Webb
  • Patent number: 8642839
    Abstract: Compositions and methods for transiently expressing proteins in a plant are provided. The compositions comprise plants, seeds, plant tissues, and plant parts expressing a protein, wherein the protein is expressed transiently and the transient expression of the protein can be used as a predictive model of how said protein will be expressed in stable transgenic plants in regards to qualitative and quantitative data. The predictive model may be used but is not limited to: promoter evaluation, evaluation of expression cassette construction for best performance (e.g. addition of enhancers or gene silencing suppressors), evaluation of best ways to express heterologous genes (e.g. point mutations, targeting), fast evaluation of endogenous gene knockout, evaluation of protein expression levels, cellular targeting, tissue targeting, transcriptional enhancers, translational enhancer protein toxicity and metabolic profiling. Further provided are methods of use.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: February 4, 2014
    Assignee: Syngenta Participations AG
    Inventor: Kasimalai Azhakanandam
  • Patent number: 8629322
    Abstract: A genome shuffling method for autogamous plants, including producing individuals having the following three traits in a tight coupling linkage by a gene engineering technique selected from a transgenic technique and a gene targeting technique: 1) dominant male sterility, 2) chemical tolerance and 3) lethality inducible by activating an inducible promoter, selecting, from progeny of the individuals, male-sterile individuals by means of the chemical tolerance described in 2) and male-fertile individuals by means of the lethality described in 3), arranging the male-sterile individuals and the male-fertile individuals close together in flowering periods thereof, so that the male-sterile individuals are crossed with the male-fertile individuals, harvesting seeds from the male-sterile individuals, and repeating outcrossing using the seeds from generation to generation.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 14, 2014
    Inventor: Junichi Tanaka
  • Patent number: 8618354
    Abstract: Methods and compositions for generating haploid organisms are described.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: December 31, 2013
    Assignee: The Regents of the University of California
    Inventors: Simon Chan, Ravi Maruthachalam
  • Patent number: 8614366
    Abstract: In various embodiments, methods described herein comprise the use of water-soluble cationic fullerene derivatives for improving plant genetic transformation. Cationic Fullerene derivatives of the invention possess DNA binding and compaction activity and provide a new method to deliver DNA into plant cells for plant transformation. Water-soluble fullerene derivatives of the invention with anionic or non-polar substituents possess antioxidant (free radical scavenging) activity, provide improved yields and efficiency of plant transformation methods such as biolistic, Agrobacterium tumefaciens, or electroporation methods by limiting cellular damage and resulting cell death leading to higher yields of viable transformed cells in the process.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: December 24, 2013
    Inventor: Stephen R. Wilson
  • Patent number: 8609928
    Abstract: The invention provides a new Squash Leaf Curl Virus (SLCV) resistant gene slc-2 in cucurbit plants and plants comprising the slc-2 gene. The invention also provides molecular markers linked to slc-2 gene. The invention further provides methods of breeding to produce plants that are resistant to SLCV, and the resistant plants produced by such methods.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: December 17, 2013
    Assignee: Vilmorin & Cie
    Inventors: Ted Superak, Julie Fauve, Eric Lionneton, Maria Petronella Christina Sengers
  • Patent number: 8609420
    Abstract: Provided are methods for introducing a molecule of interest into a plant cell having a cell wall by using a QD-peptide conjugate having a quantum dot (QD) with one or more cell penetrating peptides (CPPs). Methods are provided for genetically or otherwise modifying plants and for treating or preventing disease in plant cells comprising a cell wall.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: December 17, 2013
    Assignee: Dow AgroSciences, LLC.
    Inventors: Jayakumar P. Samuel, Narasimha C. Samboju, Kerrm Y. Yau, Gaofeng Lin, Steven R. Webb, Frank Burroughs
  • Patent number: 8604272
    Abstract: The present invention is in the field of plant breeding and disease resistance. More specifically, the invention includes a method for breeding corn plants containing quantitative trait loci that are associated with resistance to gray leaf spot, a fungal disease associated with Cercospora spp. The invention further includes germplasm and the use of germplasm containing quantitative trait loci (QTL) conferring disease resistance for introgression into elite germplasm in a breeding program for resistance to gray leaf spot.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: December 10, 2013
    Assignee: Monsanto Technology LLC
    Inventors: David Butruille, Gilberto Pozar
  • Patent number: 8586826
    Abstract: It is intended to provide a polynucleotide comprising a viral base sequence, the viral base sequence containing: a first base sequence encoding a viral replication protein, and a second base sequence encoding a viral movement protein, the second base sequence being located downstream of the first base sequence and having a linking site for linking with an exogenous base sequence encoding a polypeptide to be expressed, the linking site being located downstream of the second base sequence, the second base sequence being obtained by modifying with a base sequence in a native sequence derived from a virus by insertion, substitution, or addition. By using this, a vector containing a viral base sequence is constructed, and a protein is efficiently produced without worsening growth of a host cell containing the vector.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 19, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Masashi Mori, Koji Dohi
  • Patent number: 8586832
    Abstract: The invention provides nucleic acids, and variants and fragments thereof, obtained from strains of Bacillus thuringiensis encoding polypeptides having pesticidal activity against insect pests, including Lepidoptera. Particular embodiments of the invention provide isolated nucleic acids encoding pesticidal proteins, pesticidal compositions, DNA constructs, and transformed microorganisms and plants comprising a nucleic acid of the embodiments. These compositions find use in methods for controlling pests, especially plant pests.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: November 19, 2013
    Assignee: Pioneer Hi Bred International Inc
    Inventors: Andre R. Abad, Hua Dong, Deirdre M. Kapka-Kitzman, Sue B. Lo, Xiaomei Shi
  • Patent number: 8581045
    Abstract: This disclosure relates to a mutant Agrobacterium tumefaciens that is functionally deleted for the atu1060 gene that codes for the cyclic di-GMP synthase Atu1060, as well as methods for its use in transforming plants with desired transgenes. Such bacteria are more virulent than currently used strains of A. tumefaciens, and thus can be used to transform a wider variety of plants, such as plants that are traditionally recalcitrant to such transformation.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 12, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Stephen K. Farrand, David Michael Barnhart
  • Patent number: 8581036
    Abstract: A method of introducing a molecule of interest into a plant cell having a cell wall includes interacting a gamma-zein peptide with a molecule of interest to form a gamma-zein linked structure. The gamma-zein linked structure is then placed in contact with the plant cell having a cell wall, and allowing uptake of the gamma-zein linked structure into the plant cell. Alternatively, a gene of interest can be expressed in a plant cell having an intact cell wall by interacting a gamma-zein peptide with the gene of interest to form a gamma-zein linked gene structure, allowing uptake of the gamma-zein linked gene structure into the plant cell, and expressing the gene of interest in the plant cell and its progeny.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: November 12, 2013
    Assignee: Dow AgroSciences, LLC.
    Inventors: Narasimha C. Samboju, Jayakumar P. Samuel, Gaofeng Lin, Steven R. Webb, Frank Burroughs
  • Patent number: 8575424
    Abstract: Methods for introducing a functionalized linear nucleic acid cassette molecule of interest into a plant cell comprising a cell wall include use of nanoparticles. In some embodiments, the cell comprising a cell wall is a cultured plant cell. Methods include genetically or otherwise modifying plant cells and for treating or preventing disease in any plant, especially crop plants. Transgenic plants include a nucleic acid molecule of interest produced by regeneration of whole plants from plant cells transformed with functionalized linear nucleic acid cassette molecules.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 5, 2013
    Assignee: Dow AgroSciences, LLC.
    Inventors: Kerrm Y. Yau, Jayakumar P. Samuel, Frank Burroughs, Narasimha C. Samboju, Steven R. Webb