Patents Examined by Jason-Dennis Stewart
  • Patent number: 9398958
    Abstract: Tibial inserts and tibial femoral systems are provided for improved knee reconstruction systems. External rotation of a knee joint implant is enhanced by modifications to the post, providing a recess that allows clearance of the post against the corners of a box wall within the femoral component. The rotation provides for a more natural knee joint motion of the implant. The depth, size, and location of the post relief may be modified for certain applications to provide both improved rotational motion and constraint against undesirable motion of the knee.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: July 26, 2016
    Assignee: Smith & Nephew, Inc.
    Inventor: Nathaniel M. Lenz
  • Patent number: 9398954
    Abstract: Prosthetic artificial joints are described, including hip, knee and shoulder joints. In some embodiments, a artificial joint prosthesis includes: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure positioned adjacent to the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo; and a mechanism attached to the fluid deflection structure, the mechanism operable to move the fluid deflection structure to direct synovial fluid away from the bone-prosthesis interface in vivo.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: July 26, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Clarence T. Tegreene
  • Patent number: 9398955
    Abstract: Prosthetic artificial joints are described, including hip, knee and shoulder joints.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: July 26, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Clarence T. Tegreene
  • Patent number: 9393125
    Abstract: A tibial tuberosity advancement implant and method includes a spacer body made of biocompatible, biodegradable material and having a main section with at least one bony growth orifice therethrough and a proximal slot and at least one fin extending from the main section by at least one connector. A metal clip is slideable into the proximal slot of the spacer body main section and includes spaced screw holes for securing the spacer body to the advanced tibial tuberosity and the tibia when the implant is placed in the space between the advanced tibial tuberosity and the tibia.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: July 19, 2016
    Assignee: MWI Veterinary Supply Co.
    Inventors: Andrew J. Kazanovicz, David J. Anderson
  • Patent number: 9387080
    Abstract: Artificial joint prosthetic components including synovial fluid deflection structures are described. Embodiments of artificial joint prosthesis include those with: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis; and at least one fluid deflection structure positioned on the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: July 12, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Clarence T. Tegreene
  • Patent number: 9387072
    Abstract: A prosthetic heart valve includes a stent having an expanded condition and a collapsed condition. The stent includes a plurality of distal cells, a plurality of proximal cells, a plurality of support struts coupling the proximal cells to the distal cells, and at least one support post connected to a plurality of proximal cells. The proximal cells are longitudinally spaced apart from the distal cells. Various strut configurations and connections of the struts to the proximal cells and of the proximal cells to the support post improve stent flexibility and reduce stress in the valve leaflets.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: July 12, 2016
    Assignee: St. Jude Medical, Inc.
    Inventors: Peter N. Braido, Yousef F. Alkhatib, Thomas M. Benson, Aaron J. Chalekian, Ott Khouengboua, Julia A. Neuman
  • Patent number: 9387081
    Abstract: Artificial joint prostheses, including hip, knee and shoulder joints, are described. In some aspects, an artificial joint prosthesis includes: a bone-facing surface of an artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure attached to the non-contact surface, the fluid deflection structure positioned to direct a flow of synovial fluid away from the bone-prosthesis interface in vivo; and at least one particle retaining structure positioned to contact the directed flow of synovial fluid and configured to retain particles present within the synovial fluid.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: July 12, 2016
    Assignee: Elwha LLC
    Inventors: Edward S. Boyden, Gregory J. Della Rocca, Daniel Hawkins, Roderick A. Hyde, Robert Langer, Eric C. Leuthardt, Terence Myckatyn, Parag Jitendra Parikh, Dennis J. Rivet, Joshua S. Shimony, Michael A. Smith, Clarence T. Tegreene
  • Patent number: 9387083
    Abstract: Various embodiments of methods for obtaining kinematic information regarding a joint, including information regarding the joint in a weight-bearing position, are disclosed, as well as methods of designing implants, instruments, and surgical repair systems based on the kinematic information.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: July 12, 2016
    Inventors: Ghaith Al Hares, Klaus Radermacher
  • Patent number: 9381088
    Abstract: Knee prosthesis includes a femoral component adapted to fit on a distal end of the femur and a tibial insert component. The femoral component includes a measured anterior/posterior dimension defined by the posterior condyle surface and the interior surface of the anterior flange and a distal peg provided on a distal bone facing surface of each of the lateral and medial condylar structures, wherein the distal pegs are positioned at a midpoint of the measured anterior/posterior dimension. The implant system provides two distinct sizing segments and the tibial insert has a medial tibial aspect ratio of 0.74 and a lateral tibial aspect ratio of 0.65 to 0.68 for all sizes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 5, 2016
    Assignee: MicroPort Orthopedics Holdings Inc.
    Inventors: William J. Maloney, J. David Blaha, C. Lowry Barnes, John M. Green, David R. Tuttle
  • Patent number: 9370419
    Abstract: A venous valve with a frame and a cover on the frame for unidirectional flow of a liquid through the valve.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: June 21, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jason P. Hill, Susan M. Shoemaker, William J. Drasler
  • Patent number: 9358118
    Abstract: A knee joint prosthesis which comprises a tibial component (4, 6) and a femoral component (2). The femoral component has condyles (14, 16) which act against the tibial component, directly or indirectly, during flexing of the knee. A cam (20) on the femoral component acts against a post (26) on the tibial component at high flex angles. The surface of the post which is contacted by the cam at high flex angles is convex when the post viewed generally perpendicular to the tibial bone contact and bearing surfaces, and the femoral bearing surface which is provided by the cam, where it contacts the convex surface of the post at high flex angles, is locally concave (32) when viewed along the surface of the post which contacts the cam so that the area of contact between the post and the cam is greater at high flex angles than at lower flex angles.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: June 7, 2016
    Assignees: DePuy International, Ltd.
    Inventors: Richard Farrar, Liam Rowley, Andrew Cohen, James Brooks, Chitranjan S. Ranawat
  • Patent number: 9358117
    Abstract: A system for replacing a trochlear groove region of a femur. The system includes a prosthesis that includes a bone contact surface and a periphery that defines an outer perimeter. The bone contact surface has a plurality of protrusions and a spatial configuration with respect to one another. Additionally, the system includes a first template that has a plurality of guide holes and a first periphery that defines an outer perimeter that substantially corresponds with the periphery of the prosthesis. Also, included in the system is a second template that has a plurality of guide holes and a second periphery that defines an outer perimeter that substantially corresponds with the periphery of the prosthesis. The plurality of guide holes of the second template are spatially arranged with respect to the second periphery to substantially match the spatial configuration of the plurality of protrusions of the prosthesis.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: June 7, 2016
    Assignee: Stryker Corporation
    Inventors: Carlos E. Collazo, Stuart L. Axelson, Jr., Michael C. Ferko, Emily Hampp
  • Patent number: 9351836
    Abstract: A locking implant is provided for a long bone. The locking implant comprises a head portion, a stem portion extending from the head portion, and an anchor disposed at an end of the stem portion for engagement within a resected long bone. The anchor defines at least one locking feature, such as a cam, configured to engage an interior of the resected long bone upon rotation of the implant, thereby locking the head portion to the long bone. The implant may comprise a two component modular design. Methods of locking the implant to a long bone structure are also provided.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 31, 2016
    Assignee: Biomet Manufacturing, LLC
    Inventors: John M. McDaniel, Nathan A. Winslow
  • Patent number: 9351842
    Abstract: Knee implant systems and methods for implantation or use in a knee joint, are disclosed. A knee implant system can include at femoral component having a femur-contacting surface and an opposing articulation surface, and proximal, distal, anterior and posterior portion. The femoral component can include a medial condyle and a lateral condyle, where each of the condyles define respective distal-most points and have substantially equal widths. The width of each of the condyles can define respective condyle midpoints, where the distal-most points can be located laterally from the midpoints. The femoral component can include a trochlear groove that can define a distal-most sulcus point located halfway between the distal-most point of the medial condyle and the distal-most point of the lateral condyle.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: May 31, 2016
    Assignee: Zimmer, Inc.
    Inventors: Dwight Todd, Alex Stoller, Aravinda Bobba, Harish Kumar
  • Patent number: 9345523
    Abstract: The present invention provides for a variety of fracture fixation options should a fracture occur after total hip arthroplasty or total knee arthroplasty, and provides associated methods and apparatus for application of provided fixation. The ability to pre-engineer fracture fixation contingent solutions into femoral or tibial components provides for a distinct clinical advantage in the planning and execution for periprosthetic fracture fixation. Said methods and apparatus include targeting devices which allow for intimate association of fixed angle locking screws in pre-drilled holes in an existing prosthetic, femoral nail, or other components including additional fixation components. Use of pre-engineered fracture fixation contingent solutions into femoral or tibial components provides for a distinct clinical advantage in the planning and execution for periprosthetic fracture fixation.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: May 24, 2016
    Assignee: GENESIS MEDICAL DEVICES, LLC
    Inventors: Daniel Nick Segina, James A. Proctor, Jr., James A. Proctor, III
  • Patent number: 9345591
    Abstract: A prosthetic or orthotic system including a magnetorheological (MR) damper. The MR damper may be configured to operate in shear mode. In one embodiment, the MR damper includes a rotary MR damper. A controller is configured to operate the damper. A mobile computing device may be adapted to intermittently communicate configuration parameters to the controller. A method of configuring a prosthetic or orthotic system is also disclosed.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: May 24, 2016
    Assignee: Ă–ssur hf
    Inventors: Charles R Bisbee, III, Scott B Elliott, Magnus Oddsson
  • Patent number: 9345816
    Abstract: Disclosed is a stent comprising a bioabsorbable polymeric scaffolding; and a plurality of depots in at least a portion of the scaffolding, wherein the plurality of depots comprise a bioabsorbable material, wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the depots.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: May 24, 2016
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: David C. Gale, Bin Huang
  • Patent number: 9345579
    Abstract: A tibial tuberosity advancement implant and method includes a spacer body made of biocompatible, biodegradable material and having a main section with at least one bony growth orifice therethrough and at least one fin extending from the main section by at least one connector. A metal clip is engageable with of the spacer body main section and includes spaced screw holes for securing the spacer body to the advanced tibial tuberosity and the tibia when the implant is placed in the space between the advanced tibial tuberosity and the tibia.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: May 24, 2016
    Assignee: MWI Veterinary Supply Co.
    Inventors: Andrew J. Kazanovicz, David J. Anderson, III
  • Patent number: 9339391
    Abstract: Systems and methods for providing deeper knee flexion capabilities. In some instances, such systems and methods include a knee prosthesis that includes a femoral component for replacing at least a portion of a distal end of a femur. In some cases, the femoral component has a posterior condyle that is configured to articulate against a tibial articular surface. In such cases, an articular surface at a proximal portion of the posterior condyle is sized and shaped to extend at least half of an antero-posterior distance between a most posterior portion of the posterior condyle and a plane that is a continuation of a distal one fourth to one third of a posterior cortex of a femoral shaft of the femur. Other implementations are also discussed.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 17, 2016
    Inventors: Kent M. Samuelson, Connor E. Samuelson
  • Patent number: 9333081
    Abstract: Hard-tissue implants are provided that include a bulk implant, a face, pillars, and slots. The pillars are for implantation into a hard tissue. The slots are to be occupied by the hard tissue. The hard-tissue implant has a Young's modulus of elasticity of at least 10 GPa, has a ratio of the sum of (i) the volumes of the slots to (ii) the sum of the volumes of the pillars and the volumes of the slots of 0.40:1 to 0.90:1, does not comprise any part that is hollow, and does not comprise any non-pillar part extending to or beyond the distal ends of any of the pillars. Methods of making and using hard-tissue implants are also provided.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: May 10, 2016
    Inventor: George J. Picha