Patents Examined by Jason Holloway
  • Patent number: 11969228
    Abstract: A control system configured to control manipulation of a surgical instrument in response to manipulation of a remote surgeon input device. The surgical instrument comprises an end effector having opposable first and second end effector elements connected to a shaft by an articulated coupling. The control system receives a command from the surgeon input device to both (i) change the orientation of the end effector, and (ii) open the first and second end effector elements relative to each other. In response to the command to change the orientation of the end effector, the control system determines an angle ? between the longitudinal axis of the articulated coupling and the end effector. In response to the command to open the first and second end effector elements, the control system determines an opening angle ? between the first and second end effector elements.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: April 30, 2024
    Assignee: CMR SURGICAL LIMITED
    Inventors: Gordon Thomas Deane, Graham John Veitch
  • Patent number: 11969891
    Abstract: The present disclosure relates to a 4D printed gripper with flexible finger joints and a trajectory tracking control method thereof. The 4D printed gripper with flexible finger joints includes: a palm unit and five finger units connected to the palm unit, where each finger unit includes two flexible finger joints and two phalanges; each flexible finger joint is divided into one upper layer and one lower layer of liquid crystal elastomer (LCE), and each LCE is used to implement a bidirectional bending movement of the finger unit. The present disclosure can precisely control the gripper with flexible finger joints.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: April 30, 2024
    Assignee: YANSHAN UNIVERSITY
    Inventors: Yintang Wen, Haiying Yao, Xiaoyuan Luo, Yuyan Zhang, Xi Liang, Bo Liang
  • Patent number: 11966232
    Abstract: A modular robot is provided. The modular robot includes a sweeper module having a container for collecting debris from a surface of a location. The sweeper module is coupled to one or more brushes for contacting the surface and moving said debris into said container. Included is a robot module having wheels and configured to couple to the sweeper module. The robot module is enabled for autonomous movement and corresponding movement of the sweeper module over the surface. A controller is integrated with the robot module and interfacing with the sweeper module. The controller is configured to execute instructions for assigning of at least two zones at the location and assigning a work function to be performed using the sweeper module at each of the at least two zones. The controller is further configured for programming the robot module to activate the sweeper module in each of the two zones. The assigned work function is set for performance at each of the at least two zones.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: April 23, 2024
    Assignee: ViaBot Inc.
    Inventors: Gregg Ratanaphanyarat, Dawei Ding, John Lee, Darshan Bhanushali
  • Patent number: 11964392
    Abstract: A method and a system generate global path planning of a robot according to a node specification principle that is defined based on social norms for an indoor space using an indoor map to assist human-friendly navigation of the robot.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 23, 2024
    Assignee: NAVER LABS CORPORATION
    Inventors: Seoktae Kim, Kahyeon Kim
  • Patent number: 11958492
    Abstract: A vehicle control device configured to control a driving motor coupled to a wheel of a vehicle includes a motor controller and a driving mode determiner. The motor controller is configured to control the driving motor so that the driving motor enters a regenerative state while the vehicle is coasting and stops accelerating. The driving mode determiner is configured to determine whether the vehicle is in a first or second driving mode. In the first driving mode, a driving operation strength is low and the vehicle behavior is slow and gentle. In the second driving mode, the driving operation strength is high and the vehicle behavior is quick and active. When the vehicle stops accelerating in the second driving mode, the motor controller is configured to make a regenerative torque of the driving motor smaller than when the vehicle stops accelerating in the first driving mode.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: April 16, 2024
    Assignee: SUBARU CORPORATION
    Inventor: Shuuto Mizuno
  • Patent number: 11958196
    Abstract: A production system comprising: an industrial device being self-movable; and circuitry configured to; control the industrial device to prepare for a next job before the industrial device arrives at a next location; and control the industrial device to perform the next job when the industrial device arrives at the next location and a preparation for the next job is completed.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: April 16, 2024
    Assignee: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Takeshi Yamashita, Ryosuke Tsutsumi
  • Patent number: 11960281
    Abstract: In resource sharing by autonomous devices in an environment, first and second autonomous devices send first and second reservation requests, respectively, to a reservation controller for access to a resource in the environment required to perform first and second tasks. The first and second reservation requests include first and second requested utilizations, respectively, for usage of the resource. The first autonomous device receives a first permit with a first granted utilization, and the second autonomous device receives a second permit with a second granted utilization, for usage of the resource. Using the resource, the first autonomous device performs the first task according to the first granted utilization, and the second autonomous device performs the second task according to second granted utilization, where second granted utilization does not conflict with the first granted utilization.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 16, 2024
    Assignee: TP Lab, Inc.
    Inventors: Chi Fai Ho, Benson Junwun Ho
  • Patent number: 11955015
    Abstract: A flight data aggregation system for a plurality of aircraft includes one or more portable electronic devices in electronic communication with one or more central computers. The one or more portable electronic devices each monitor flight data from a corresponding aircraft. The one or more portable electronic devices analyze the flight data in real-time to determine an insight event indicating an incident of significance is presently occurring upon the corresponding aircraft. Each central computer includes one or more processors and a memory coupled to the one or more processors. The central computers are caused to receive the flight data collected during the insight event from an individual portable electronic device. The central computers determine overall flight data patterns based on the flight data collected during the insight event received from the individual portable electronic device and historical data stored in the one or more databases.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: April 9, 2024
    Assignee: The Boeing Company
    Inventors: André Dugas, Joerg Robert Oliver Schmidt, Millie Irene Sterling
  • Patent number: 11945125
    Abstract: The present disclosure relates to the field of artificial intelligence (AI) technologies, and provides an auxiliary photographing device for dyskinesia analysis, and a control method and apparatus for an auxiliary photographing device for dyskinesia analysis. The method includes controlling a camera assembly of the auxiliary photographing device at a first position to perform photographing, to obtain a first image, the first image comprising a target body part of a patient having dyskinesia; determining, in the first image, a position of a target region corresponding to the target body part; controlling an orientational movement of a mechanical arm of the auxiliary photographing device according to the position of the target region, to adjust the camera assembly to a second position; and controlling the camera assembly at the second position to perform photographing, to obtain a second image, the second image comprising the target body part.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: April 2, 2024
    Assignee: TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED
    Inventors: Lin Zhang, JianBao Wu
  • Patent number: 11940789
    Abstract: A system for autonomous or semi-autonomous operation of a vehicle is disclosed. The system includes a machine automation portal (MAP) application configured to enable a computing device to (a) display a map of a work site and (b) provide a graphical user interface that enables a user to (i) define a boundary of an autonomous operating zone on the map and (ii) define a boundary of one or more exclusion zones. The system also includes a robotics processing unit configured to (a) receive the boundary of the autonomous operating zone and the boundary of each exclusion zone from the computing device, (b) generate a planned command path that the vehicle will travel to perform a task within the autonomous operating zone while avoiding each exclusion zone, and (c) control operation of the vehicle so that the vehicle travels the planned command path to perform the task.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 26, 2024
    Assignee: EQUIPMENTSHARE.COM INC.
    Inventors: William J. Schlacks, IV, Brian Adams, James Dianics, Ian Graves, Rob Martin, Scott Pfursich
  • Patent number: 11932387
    Abstract: A tailsitter aircraft includes an airframe, a thrust array attached to the airframe and a flight control system. The thrust array includes propulsion assemblies configured to transition the airframe from a forward flight orientation to a VTOL orientation at a conversion rate for an approach to a target ground location in a forward flight-to-VTOL transition phase. The flight control system implements an adaptive transition system including a transition parameter monitoring module configured to monitor parameters including a ground speed and a distance to the target ground location. The adaptive transition system includes a transition adjustment determination module configured to adjust the conversion rate of the airframe from the forward flight orientation to the VTOL orientation based on the ground speed and the distance to the target ground location such that the airframe is vertically aligned with the target ground location in the VTOL orientation of the forward flight-to-VTOL transition phase.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: March 19, 2024
    Assignee: Textron Innovations Inc.
    Inventors: John Robert Wittmaak, Jr., Russell C. Peters, William Alexander Dean, Spencer Hancock
  • Patent number: 11933621
    Abstract: Methods for providing a location of an object or objects of interest that may be performed by a processor of a computing device may include generating a map of an environment around the computing device by a first simultaneous location and mapping (SLAM) operation using information received from the optical sensor, identifying an object of interest in the environment of the computing device by an object recognition operation using information received from the optical sensor, determining a location of the object or objects of interest in the environment, and presenting the determined location of the object or objects of interest in the environment in response to a trigger event correlated to the object or objects of interest.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: March 19, 2024
    Assignee: QUALCOMM Incorporated
    Inventors: Sumeet Kumar Sahu, Vishnu Vardhan Kasilya Sudarsan, Tapan Kumar Sahu
  • Patent number: 11926342
    Abstract: Among other things, techniques are described for notifying and explaining the action performed by an autonomous vehicle, including but not limited to: receiving a planned path of a vehicle, a state of the vehicle and environment data of an environment in which the vehicle is operating, receiving a deviation signal, determining whether the deviation signal was reported by a first system or a second system of the vehicle, in response selecting a first set of simulators or a second set of simulators for simulating the vehicle in the environment, simulating the vehicle in the environment using the selected first or second set of simulators, based on results of the simulating, generating a message and presenting the message to at least one occupant of the vehicle.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: March 12, 2024
    Assignee: Motional AD LLC
    Inventors: Laith Sahawneh, Bence Cserna
  • Patent number: 11926511
    Abstract: This remote operation terminal is provided with: an image acquisition unit that acquires an image shot by a suspended load camera; a display device that displays the image; an image rotation operation part that rotates the image; a suspended load moving operation part that sets the moving direction of the tip of a boom; and a terminal-side control device that is configured to be communicable with a control device of a crane, wherein when the image rotation operation part is operated during the operation of the suspended load moving operation part, the terminal-side control device rotates the image displayed on the display device in accordance with a rotation amount of the image rotation operation part, and rotates the moving direction of the tip of the boom set through operation of the suspended load moving operation part reversely to the rotating direction of the image displayed on the display device, by an amount of the rotation of the image.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: March 12, 2024
    Assignee: TADANO LTD.
    Inventor: Hiroyuki Hayashi
  • Patent number: 11926283
    Abstract: A system includes a first controller including a processor and a memory, and the memory stores instructions executable by the processor to receive first acceleration data from an accelerometer; upon determining that the first acceleration data satisfies a first criterion, transmit a wake-up instruction to a second controller; upon determining that the first acceleration data fails to satisfy the first criterion, instruct the accelerometer to send second acceleration data; and upon determining that the second acceleration data satisfies a second criterion, transmit the wake-up instruction to the second controller. The first criterion includes jerk exceeding a jerk threshold.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: March 12, 2024
    Assignee: Ford Global Technologies, LLC
    Inventor: Khalid Shamsuddin Hossain
  • Patent number: 11914365
    Abstract: A system for autonomous or semi-autonomous operation of a vehicle is disclosed. The system includes a machine automation portal (MAP) application configured to enable a computing device to (a) display a map of a work site and (b) provide a graphical user interface that enables a user to (i) define a boundary of an autonomous operating zone on the map and (ii) define a boundary of one or more exclusion zones. The system also includes a robotics processing unit configured to (a) receive the boundary of the autonomous operating zone and the boundary of each exclusion zone from the computing device, (b) generate a planned command path that the vehicle will travel to perform a task within the autonomous operating zone while avoiding each exclusion zone, and (c) control operation of the vehicle so that the vehicle travels the planned command path to perform the task.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: February 27, 2024
    Assignee: EQUIPMENTSHARE.COM INC.
    Inventors: William J. Schlacks, IV, Brian Adams, James Dianics, Ian Graves, Rob Martin, Scott Pfursich
  • Patent number: 11912303
    Abstract: Provided are a vehicle obstacle-avoidance method, an apparatus, and a vehicle. The method includes: acquiring obstacle information, in a case that an obstacle is detected; determining whether the obstacle is a straight-going obstacle in a planned route, according to the planned route and the obstacle information; acquiring a center-of-gravity position of a vehicle, a safe stopping distance and a vehicle current speed, in a case that the obstacle is determined as the straight-going obstacle in the planned route; determining a maximum acceleration of the vehicle, according to the center-of-gravity position; and determining a straight-going obstacle-avoidance strategy, according to the obstacle information, the maximum acceleration, the safe stopping distance and the vehicle current speed.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: February 27, 2024
    Assignee: SHANGHAI QUICKTRON INTELLIGENT TECHNOLOGY CO., LTD
    Inventors: Huiliang Liu, Run Huang, Wei Huang, Leilei Xing
  • Patent number: 11899102
    Abstract: The disclosure relates to an autonomous moving object comprising: a radar sensor configured to scan a volume in front of the object, and a radar signal processor configured to: acquire a sequence of radar responses, each radar response of the sequence being acquired at a different position of the autonomous moving object, and perform synthetic aperture radar processing of at least parts of the acquired sequence of radar responses to obtain a synthetic aperture radar image representing response amplitude as a function of at least distance and angle with respect to the radar sensor, the autonomous moving object further comprising: a controller configured to detect presence of a potential obstacle within a pre-defined sub-volume in front of the autonomous moving object by analyzing the synthetic aperture radar image and, in response to detecting presence of a potential obstacle, output a control command configured to cause a changed movement of the autonomous moving object.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: February 13, 2024
    Assignee: Acconeer AB
    Inventors: Bo Lincoln, Peter Almers, Rikard Nelander
  • Patent number: 11897635
    Abstract: Provided are a method for maintaining Walker constellation formation and a terminal device. The method comprises: determining a first offset amount of each satellite within a simulation time period according to parameters of a Walker constellation; performing first offset on each satellite according to the first offset amount to obtain a Walker constellation after the first offset; determining a second offset amount of each satellite within the simulation time period according to parameters of the Walker constellation after the first offset; and superimposing the first offset amount and the second offset amount, and performing second offset on each satellite so as to maintain the formation of the Walker constellation.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: February 13, 2024
    Assignee: Space Engineering University
    Inventors: Min Hu, Jiuyang Li, Xuyu Wang, Yongjing Ruan, Feifei Li, Xianjun Pan, Tianyu Sun, Ge Zhang
  • Patent number: 11884297
    Abstract: A method autonomously controls a mobility of an automotive apparatus, which mobility is such as to have an influence on the path of the apparatus. The method includes steps of: acquiring parameters relative to the path of the apparatus, and of computing a new control setpoint for the mobility of the apparatus depending on said parameters, this new control setpoint being determined by means of a controller that respects a model that limits the variation in the control setpoint.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: January 30, 2024
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Anh Lam Do