Patents Examined by Jason Ip
  • Patent number: 9693751
    Abstract: Disclosed herein too is a positron emission tomography calibration system comprising a positron emission tomography scanner having a ring detector that comprises at least one bin for receiving radiation; a patient that is placed at approximately the center of the ring detector where the patient is irradiated with at least one dose of a treatment radiation beam; a crystal efficiency calibration system that performs the following: measures activity generated by the at least one defined radiation dose in the at least one bin; takes projection data of the measured activity; calculates crystal efficiency from the projection data; re-estimates the measured activity of each bin based on the calculated crystal efficiency; and calibrates the detector based on the re-estimated measured activity.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: July 4, 2017
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Vladimir Y. Panin
  • Patent number: 9694206
    Abstract: A radiotherapy system comprises a patient support, moveable along a translation axis, an imaging apparatus, comprising a first magnetic coil and a second magnetic coil, the first and second magnetic coils having a common central axis parallel to the translation axis, and being displaced from one another along the central axis to form a gap therebetween, the imaging apparatus being configured to obtain an image of a patient on the patient support, a source of radiation mounted on a chassis, the chassis being rotatable about the central axis and the source being adapted to emit a beam of radiation through the gap along a beam axis that intersects with the central axis, a multi-leaf collimator comprising a plurality of elongate leaves movable between at least a withdrawn position in which the leaf lies outside the beam, and an extended position in which the leaf projects across the beam, and a radiation detector mounted to the chassis opposite the source, the radiation detector having a plurality of detector ele
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: July 4, 2017
    Assignee: ELEKTA AB (PUBL)
    Inventors: John Allen, Kevin Brown
  • Patent number: 9694170
    Abstract: A method for planning an infusion into hepatic tissue into a patient includes: obtaining anatomical and/or physiological patient data of the patient's liver or a region of the liver; determining at least one patient parameter from the patient data; planning the infusion using the anatomical patient data, physiological patient data, and/or at least one patient parameter, wherein planning includes determining how an administered substance is distributed in the tissue and/or how the administered substance influences physiological properties of the tissue; and determining a distribution and/or effectiveness of a therapeutic agent administered with the substance or after the substance.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: July 4, 2017
    Assignee: Brainlab AG
    Inventors: Christoph Pedain, Andreas Hartlep
  • Patent number: 9687173
    Abstract: A coil pad according to one embodiment is a coil pad that is placed between a receiving coil and a subject. The receiving coil is mounted on the subject and receives a magnetic resonance signal emitted from the subject. The coil pad includes a pad opening and a vibrating portion. The pad opening is aligned with a coil opening included in the receiving coil and forms a through-hole between the coil opening and the subject. The vibrating portion vibrates with a medium that transmits vibration being filled therein.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 27, 2017
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Sadanori Tomiha
  • Patent number: 9687204
    Abstract: A method and system for registering ultrasound images and physiological models to x-ray fluoroscopy images is disclosed. A fluoroscopic image and an ultrasound image, such as a Transesophageal Echocardiography (TEE) image, are received. A 2D location of an ultrasound probe is detected in the fluoroscopic image. A 3D pose of the ultrasound probe is estimated based on the detected 2D location of the ultrasound probe in the fluoroscopic image. The ultrasound image is mapped to a 3D coordinate system of a fluoroscopic image acquisition device used to acquire the fluoroscopic image based on the estimated 3D pose of the ultrasound probe. The ultrasound image can then be projected into the fluoroscopic image using a projection matrix associated with the fluoroscopic image. A patient specific physiological model can be detected in the ultrasound image and projected into the fluoroscopic image.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: June 27, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Peter Mountney, Markus Kaiser, Ingmar Voigt, Matthias John, Razvan Ioan Ionasec, Jan Boese, Dorin Comaniciu
  • Patent number: 9668670
    Abstract: An endorectal coil (1) includes a tube (40), a spreader (44), and one or more electrically conductive elements (64). The tube (40) is configured for insertion into the rectum (42). The spreader (44) is configured to be positioned at a distal end of the tube (40) and mechanically spread to compress surrounding tissue after the tube (40) is inserted. The one or more electrically conductive elements (64) are tuned to receive magnetic resonance data disposed on at least one of the tube (40), the spreader (44), and adjacent the tube and spreader.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: June 6, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Daniel Wirtz, Peter Mazurkewitz, Christoph Leussler
  • Patent number: 9661991
    Abstract: The invention provides a method and system for performing an image-guided endoscopic medical procedure. The invention may include registering image-space coordinates of a path of a medical instrument within the anatomy of a patient to patient-space coordinates of the path of the medical instrument within the anatomy of the patient. In some embodiments, the image space coordinates of the path of the medical instrument may be predicted coordinates such as, for example, a calculated centerline through a conduit-like organ, or a calculated “most likely path” of the medical instrument within the anatomy of the patient. In other embodiments, the path of the medical instrument may be an actual path determined using intra-operative images of the patient's anatomy with the medical instrument inserted therein. The registered instrument may then be navigated to one or more items of interest for performance of the endoscopic medical procedure.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: May 30, 2017
    Assignee: Koninklijke Philips N.V.
    Inventor: Neil David Glossop
  • Patent number: 9629570
    Abstract: A subject-specific skeletal model of a body is created, and an intended path of a catheter within the body is defined in the model. While the probe is inserted into the body electrical currents are passed through the body between at least one electrode in the probe and through respective electroconductive location pads that are disposed at a plurality of locations on the body surface along the intended path. Based on respective characteristics of the currents passing through the plurality of locations, position coordinates of the probe are iteratively determined. The actual path of the probe is tracked with reference to in the model using the iteratively determined position coordinates to determine whether the actual path corresponds to the intended path.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: April 25, 2017
    Assignee: Biosense Webster (Israel) Ltd.
    Inventor: Meir Bar-Tal
  • Patent number: 9566014
    Abstract: A system for cardiac MR imaging receives a heart rate signal representing heart electrical activity. The system, over multiple successive heart cycles, uses multiple MR imaging RF coils in gradient echo imaging a patient heart, synchronized with the heart rate signal and uses an inversion recovery pulse for inverting myocardium tissue MR signal for an individual heart cycle, to acquire, within multiple individual successive portions of an individual heart cycle, corresponding successive multiple patient heart images. An individual image of an individual heart cycle portion is derived from multiple heart image representative data sets comprising a reduced set of k-space data elements acquired using corresponding multiple coils of the RF imaging coils. An image generator generates an MR image of an individual heart cycle portion using the multiple heart image representative data sets comprising the reduced set of k-space data elements.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: February 14, 2017
    Assignee: Siemens Healthcare GmbH
    Inventor: Jian Xu
  • Patent number: 9513113
    Abstract: Systems and methods are provided for optical topology detection and illumination. Embodiments provide an integrated system, and methods of operation thereof, where the integrated system includes an illumination system and an optical topology detection system, and where at least a portion of the spectral content of illumination light from the illumination system is within an optical detection bandwidth of the optical topology detection system, and where the operation of the optical topology detection system and the illumination system are interleaved to avoid crosstalk, such that the optical topology detection system detects the optical topology detection light when the illumination system is not emitting illumination light. The system may include, and control the operation of, an optical navigation system. The components of the system may be mounted to a rigid frame to maintain calibration.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: December 6, 2016
    Assignee: 7D SURGICAL, INC.
    Inventors: Victor Yang, Adrian Linus Dinesh Mariampillai, Beau Anthony Standish, Michael Ka Kit Leung
  • Patent number: 9501620
    Abstract: Systems and methods are disclosed for quantifying absolute blood volume flow rates by fitting a kinetic model incorporating blood volume, bolus dispersion and signal attenuation to dynamic angiographic data. A self-calibration method is described for both 2D and 3D data sets to convert the relative blood volume parameter into absolute units. The parameter values are then used to simulate the signal arising from a very short bolus, in the absence of signal attenuation, which can be readily encompassed within a vessel mask of interest. The volume flow rate can then be determined by calculating the blood volume within the vessel mask and dividing by the simulated bolus duration. This method is exemplified using non-contrast magnetic resonance imaging data from a flow phantom and the cerebral arteries of healthy volunteers and a patient with Moya-Moya disease acquired using a 2D vessel-encoded pseudo-continuous arterial spin labeling pulse sequence.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 22, 2016
    Assignee: Oxford University Innovation Limited
    Inventors: Thomas Okell, Michael Chappell, Peter Jezzard
  • Patent number: 9498185
    Abstract: An ultrasound probe (3) of an ultrasound diagnostic apparatus (1) includes an acceleration sensor (5) provided for outputting acceleration information for use in obtaining an angle of the ultrasound probe at the time of diagnosing a subject. The acceleration information is converted into angle information of the ultrasound probe by an angle conversion section (11). The ultrasound diagnostic apparatus (1) includes a monitor (4) for displaying a diagnosing image of the subject obtained with the ultrasound probe (3), and a body mark (16) corresponding to the diagnostic mode selected at the time of diagnosing and a probe icon (15) placed at an angle corresponding to the angle information with respect to the body mark (16) are displayed on the monitor (4). This makes it possible to provide an ultrasound diagnostic apparatus which can display an angle of the ultrasound probe at the time of diagnosing the subject.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: November 22, 2016
    Assignee: KONICA MINOLTA, INC.
    Inventors: Takashi Kimoto, Katsumi Satake, Seiichi Fukai, Satoru Uchikawa, Hajime Hirasawa, Masao Kimura
  • Patent number: 9480858
    Abstract: A radiotherapy system comprises a patient support, moveable along a translation axis, an imaging apparatus, comprising a first magnetic coil and a second magnetic coil, the first and second magnetic coils having a common central axis parallel to the translation axis, and being displaced from one another along the central axis to form a gap therebetween, the imaging apparatus being configured to obtain an image of a patient on the patient support, a source of radiation mounted on a chassis, the chassis being rotatable about the central axis and the source being adapted to emit a beam of radiation through the gap along a beam axis that intersects with the central axis, a multi-leaf collimator comprising a plurality of elongate leaves movable between at least a withdrawn position in which the leaf lies outside the beam, and an extended position in which the leaf projects across the beam, and a radiation detector mounted to the chassis opposite the source, the radiation detector having a plurality of detector ele
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 1, 2016
    Assignee: Elekta AB (Publ)
    Inventors: John Allen, Kevin John Brown
  • Patent number: 9456738
    Abstract: An endoscopic diagnosis system includes a first narrowband light source for emitting first narrowband light having a given wavelength range, a second narrowband light source for emitting second narrowband light having a wavelength range different from that of the first narrowband light, a first image sensor for receiving reflected light of the first narrowband light illuminating a subject from the subject to acquire a narrowband light image in a narrowband light observation mode, a second image sensor for receiving first autofluorescence emitted from the subject as the first narrowband light illuminates the subject to acquire a first autofluorescence image in a first autofluorescence observation mode and receiving second autofluorescence emitted from the subject as the second narrowband light illuminates the subject to acquire a second autofluorescence image in a second autofluorescence observation mode.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: October 4, 2016
    Assignee: FUJIFILM CORPORATION
    Inventor: Hiroaki Yamamoto
  • Patent number: 9451901
    Abstract: Invention is related to cardiology and intended for diagnosis of ischemic myocardial injuries. Magnetocardiographic examination is executed, current density vectors maps are reconstructed during ST-T interval and 4 sub-intervals of QRS complex, quantitative diagnostic indicators are calculated. Characterized in that, for said time intervals total length of all vectors (total current), autocorrelation coefficient of the instant map and its correlation with map onto the T wave peak are derived, several quantitative indicators for these curves are calculated (area under the curve, time intervals, their ratio, etc.) and ranges of their values are divided onto 3 intervals. As a result, absence/presence of ventricles injuries is diagnosed according to the rule—injury is absent (presence minor, significant), if certain quantitative indicator is ranged in one of 3 said intervals or if score of points for separate quantitative indicators is less than or equal to 7 (8-16, 17 and more).
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: September 27, 2016
    Inventor: Illya Anatoliiovych Chaykovskyy
  • Patent number: 9451928
    Abstract: A diagnostic image of internal anatomical features of a patient is annotated with representations of external features, such that both can be viewed together on a visual display. Adjustments to various treatment parameters relating to the administration of radiation therapy are provided, and the displayed image is automatically updated based on the adjustments.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: September 27, 2016
    Assignee: Elekta LTD.
    Inventors: Tony Falco, Martin Lachaine, Jason Gorman
  • Patent number: 9393597
    Abstract: A curved high intensity focused ultrasound (HIFU) transducer comprising a plurality of curved composite ceramic piezoelectric tiles having opposite convex and concave surfaces, each tile having electrodes on the surfaces electrically coupled to the composite ceramic piezoelectric material, and a plurality of acoustic transmission areas located on each tile and actuated through electrodes on the convex surface, the transmission areas and electrodes being acoustically separated from surrounding areas by cuts into the composite ceramic piezoelectric material, the plurality of tiles fitting together to form a substantially continuous curved composite piezoelectric surface which transmits HIFU acoustic energy.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: July 19, 2016
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Dennis Dean Clark
  • Patent number: 9392965
    Abstract: A method of detecting a change in tension of a body surface during a medical procedure is provided. In some embodiments the method may be carried out without additional invasive devices or procedures being required. In one example the methodology is applied when using any type of body surface tensioning device. The tensioning device comprises fiducials that are visible to an image acquisition device. In another example of an embodiment of the current application, the methodology may be applied by attaching fiducials directly to the body surface. The relative motion of the fiducials relative to one another may be utilized to determine a change in body surface tension.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 19, 2016
    Assignee: Restoration Robotics, Inc.
    Inventors: John A. Tenney, Mohan Bodduluri, Gabriele Zingaretti, Clifford A. Oostman, Jr.
  • Patent number: 9384544
    Abstract: In a method and apparatus for measuring a ratio of a variable for assessment in medical imaging data of a subject, a viewable image is generated from source imaging data of the subject. A pair of regions of interest for arrangement on the viewable image is then generated, and a value of the variable for each region of the pair from the source imaging data is determined. The ratio of the two values is then determined from the pair.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: July 5, 2016
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Thomas George Wright
  • Patent number: 9380993
    Abstract: A transmit/receive isolation for an ultrasound system to block a high voltage transmit signal from being propagated to a receiving unit during a transmission period of an ultrasound signal is disclosed. An ultrasound system includes a switching unit coupled to a transmitting unit, a ultrasound probe and a receiving unit. The switching unit includes diode bridges and a switching module having pairs of switches connected to the respective diode bridges, wherein each pair of switches is configured to perform switching between a plus voltage and a minus voltage to forward-bias a corresponding diode bridge to allow a respective receive signal to be propagated to the receiving unit in a first state and to reverse-bias the corresponding diode bridge to block a respective transmit signal to be propagated to the receiving unit in a second state.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: July 5, 2016
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventor: Hong Gyo Lee