Patents Examined by Jason M Sims
  • Patent number: 11864909
    Abstract: The present disclosure provides methods and apparatus for evaluating the flow of blood in damaged or healing tissue. The present disclosure also provides methods of identifying a patient at the onset of risk of pressure ulcer or at risk of the onset of pressure ulcer, and treating the patient with anatomy-specific clinical intervention selected based on perfusion or blood oxygenation values, or a combination thereof. The present disclosure also provides methods of stratifying groups of patients based on risk of wound development and methods of reducing incidence of tissue damage in a care facility. The present disclosure also provides methods to analyze trends of perfusion or oxygenation measurements to detect tissue damage before it is visible, and methods to compare bisymmetric perfusion values to identify damaged tissue.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: January 9, 2024
    Assignee: BBI Medical Innovations, LLC
    Inventors: Martin F. Burns, Graham O. Ross
  • Patent number: 11867168
    Abstract: A fluid control device (101) includes a pump (20), a container (70) that is pressurized or decompressed by the pump (20), a valve (60) that allows communication between the container (70) and an outside of the container (70) when the valve (60) is in an opened state, and a controller (90) that controls the pump (20) and the valve (60). The controller (90) pressurizes or decompresses the container (70) by closing the valve (60) and driving the pump (20) and then cools down the pump (20) by opening the valve (60) and driving the pump (20). Accordingly, an increase in the temperature of the pump can be reduced, and convenience of the fluid control device can be improved.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: January 9, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Nobuhira Tanaka
  • Patent number: 11850071
    Abstract: The accuracy of physiological data measured through contact with skin can be validated by characterizing the forces at the surfaces where data is measured. Conventional devices do not monitor the fit of skin-based sensors, making the accuracy and confidence in physiological data dependent on the user ensuring that the device is fitted properly. Over time, the seating of a device will vary due to changes in user activity and the need to periodically remove a device. Inevitably, instances will arise where the device is not fitted correctly, which may result in skewed physiological metrics. By monitoring the forces acting on the housing of a device, the interface of skin sensors can be characterized allowing for confidence metrics in the corresponding physiological data to be determined. In some cases, a user can be notified when a device is not seated properly, and in some cases, data may even be calibrated based on the fit of a device.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 26, 2023
    Assignee: Fitbit, Inc.
    Inventors: Brett Adam Coakley, Peter Colin Dess, Daniel Joel Freschl, Lindsey Michelle Sunden, Suraj Gowda, Tracy Norman Giest, Aditya Vivekanand Nadkarni
  • Patent number: 11766203
    Abstract: The present invention is directed to devices including one or more hollow needles and a transducing wire disposed within at least one needle. In particular instances, arrays of such needles can be employed. Methods for fabricating and using such devices are also disclosed herein.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: September 26, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Philip Rocco Miller, Ronen Polsky, Nathaniel Bryant Pfeifer
  • Patent number: 11690562
    Abstract: A system includes a sensor for measuring a skin parameter. The sensor includes at least three spatially separated light sources for providing unpolarized visible light, a detector located at a first distance from each of the light sources selected from the range of 10-80 mm and at a second distance from the skin, and a polarizer including one or more of a segmented polarizer and a spatially varying polarizer. In a sensing mode, the light sources are configured to sequentially illuminate the skin with the light with optical axes at an angle of incidence selected from the range of 10°-80°, and the detector is configured to sequentially detect light reflected from the skin and generate corresponding detector signals.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: July 4, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Babu Varghese, Arnoldus Johannes Martinus Jozeph Ras, Rieko Verhagen
  • Patent number: 11666237
    Abstract: The present technology relates to a measurement apparatus and a measurement method that realize reduction in power consumption while at the same time ensuring reduction in cost. Provided is a measurement apparatus that includes a light source, a light reception section, and a measurement section. The light source emits at least partially coherent light. The light reception section receives the light emitted from the light source by way of a measurement target and detects a signal proportional to the received light. The measurement section measures the number of oscillations included in the signal detected by the light reception section within a certain time period. For example, the present technology can be applied to a measurement apparatus measuring a blood flow of a human body.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 6, 2023
    Assignee: SONY CORPORATION
    Inventors: Atsushi Ito, Kazunari Yoshifuji
  • Patent number: 11589764
    Abstract: A method, system, apparatus, and/or device to determine a condition of a user using multiple sensors. The method, system, apparatus, and/or device may include: a band configured to extend at least partially around a body part of a user having a subdermal feature within body part; a light configured in the band to emit light into the body part; a miniaturized spectrometer positioned in the band to press against the body part to receive the light, where the miniaturized spectrometer comprises: an optical filter configured to isolate a relevant constituent wavelength of the light; a collimator configured to collimate the light; and an optical sensor configured to detect an intensity of the relevant constituent wavelength; and an impedance sensor integrated into the band and configured to be positioned against a same side of the body part as the miniaturized spectrometer.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: February 28, 2023
    Assignee: Brigham Young University
    Inventors: Robert Davis, Richard Vanfleet, Nick Morrill, David Miller
  • Patent number: 11583199
    Abstract: A device for monitoring a health parameter in a person is disclosed. The device includes a semiconductor substrate, at least one transmit antenna configured to transmit millimeter range radio waves over a 3D space below the skin surface of a person, multiple receive antennas configured to receive radio waves, the received radio waves including a reflected portion of the transmitted radio waves, wherein the semiconductor substrate includes circuits for processing signals received on the multiple receive antennas, wherein processing signals includes mixing signals of two different frequencies, and wherein the semiconductor substrate includes at least one output configured to output a signal that corresponds to a health parameter of a person in response to received radio waves.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: February 21, 2023
    Assignee: MOVANO INC.
    Inventor: Michael A. Leabman
  • Patent number: 11571149
    Abstract: Systems, devices, and methods are provided for changing the power state of a sensor control device in an in vivo analyte monitoring system in various manners, such as through the use of external stimuli (light, magnetics) and RF transmissions.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: February 7, 2023
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Jean-Pierre Cole, Lei He, Michael R. Love, Jeffery M. Sicurello
  • Patent number: 11540736
    Abstract: A wearable electronic device is disclosed, including: a housing having a front plate disposed facing in a first direction, a rear plate disposed facing in a second direction opposite to the first direction, at least a part of the rear plate substantially transparent, and a side member defining a space between the front plate and the rear plate, a substrate disposed within the space, a biometric sensor module disposed between the substrate and the rear plate including at least one light source configured to emit light to an exterior of the wearable electronic device and at least one light detector configured to receive reflected light corresponding to the emitted light reflected from the exterior, and at least one magnetic substance disposed between the light source and the light detector to limit an amount of light reaching the biometric sensor module other than the reflected emitted light.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: January 3, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seonho Han, Taegyun Kim
  • Patent number: 11337633
    Abstract: The present invention relates to measuring electrical impedance, and particularly to measuring impedance of electrodes used to acquire physiological signals. The measurement of electrode impedance is typically performed to ensure proper electrode-to-skin contact, and thus verify the quality of the acquired signals. Electrode-to-skin contact impedance has also clinical utility for monitoring, diagnosis, prognosis or treatment, as it can be used to measure skin conductivity, which is function of physiological processes. The present invention relates in particular to a substantially continuous method for performing such measurement. The measurement is performed in such a way that it does not affect the bioband, the range (or ranges) of frequencies that contains components used for diagnostic, prognostic, triage, and/or treatment purposes. The present invention therefore performs this impedance measurement without affecting the physiological signal while allowing for uninterrupted monitoring of said signal.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: May 24, 2022
    Assignee: NeuroWave Systems Inc.
    Inventors: Stephane Bibian, Tatjana Zikov
  • Patent number: 11266323
    Abstract: A skin measuring apparatus measures a skin moisture level using a voltage application electrode and a current detection electrode. The skin measuring apparatus includes an electrode driving module applying sinusoidal wave voltage to skin of a user through the voltage application electrode so that an amount of current is output from the skin through the current detection electrode, a signal detecting unit detecting the amount of current from the skin through the current detection electrode to calculate at least one of an impedance signal and an admittance signal, and a skin information determination unit analyzing the at least one of the impedance signal and the admittance signal to calculate the skin moisture level and a sweat production rate of the user, thereby analyzing the skin moisture level and the sweat generation rate more precisely without distortion.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: March 8, 2022
    Assignee: GPOWER INC.
    Inventors: Chang Hee Han, Deug Ki Lee
  • Patent number: 11219390
    Abstract: A device for introducing at least one antimicrobial in an exposed region of a user's skin caused while accessing interstitial fluid includes a substrate having thereon at least one electrically controllable microheating element including at least a microheater portion with multiple electrodes connected to the microheater portion for forming a micropore in the user's skin. A nanofiber mat loaded with at least one antimicrobial material is arranged on the substrate such that it contacts the user's skin and encircles an opening of the micropore formed by the microheating element. In a preferred embodiment, the at least one antimicrobial material is LL-37.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: January 11, 2022
    Assignee: Georgetown University
    Inventors: Makarand Paranjape, Shruti M. Paranjape
  • Patent number: 11197628
    Abstract: A device for simultaneously acquiring electrocardiogram (ECG) signals, impedance plethysmogram (IPG) signals, ballistocardiogram (BCG) signals, and weight measurements through feet of a user. The device includes an electrically-conductive surface for contacting feet of the user and supporting weight of the user during use. The device also includes one or more force sensors for detecting forces and force variations across the electrically-conductive surface, electronics for processing electrical signals generated and/or detected from the electrically conductive surface, signals from the set of force sensors, and a base containing the electronics. The base is structurally coupled to the electrically-conductive surface by a set of conductive fasteners that transmit signals from the electrically-conductive surface to the electronics. The device can also include an integrated display for providing health insights to the user.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: December 14, 2021
    Assignee: Bodyport Inc.
    Inventors: Corey James Centen, Sarah Ann Smith, Michael Prichard
  • Patent number: 11179060
    Abstract: A system adapted to assisting patients manage asthma includes a wearable sensor for detection of asthma symptoms and inhaler use, having a microphone capable of generating an electrical signal indicative of asthma symptoms or inhaler use; a processor with firmware adapted to process the electrical signal to determine potential asthma symptoms and inhaler use; and store the electrical signal in the memory when the electrical signal potentially corresponds asthma symptoms or inhaler use. In particular embodiments, the system includes an electronic asthma diary including detected asthma symptoms and detected inhaler usage, both with timestamps, and a prescribed treatment protocol. Protocol firmware processes detected asthma symptoms an inhaler usage recorded in the asthma diary to determine if asthma is controlled, and if asthma is not determined controlled determines if a treatment change is authorized; if treatment change is authorized the treatment change is displayed in human-readable form.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: November 23, 2021
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Kofi Odame, Justice Amoh
  • Patent number: 11172850
    Abstract: Device, system and method to monitor user breathing patterns utilizing posture and diaphragm (breathing) sensor signals. The user worn device comprises a housing attached to a retractable belt that is worn around the user's trunk. The housing contains both posture and breathing sensors. The device monitors the output signals of these sensors and measures the state of both the user's posture and diaphragm (e.g. changes in the belt's length or force on the belt as a function of user breathing) to analyze breathing signals. The system's processor receives, processes, and transmits sensor signal data, and can also calibrate and interpret these signals utilizing various algorithms. In a preferred embodiment, the posture sensor is an accelerometer, and the retractable belt winds around a spring tensioned spool in the device's housing. The software can produce posture adjusted user respiration data, and can also be used for breath training and other purposes.
    Type: Grant
    Filed: May 6, 2018
    Date of Patent: November 16, 2021
    Assignee: Prana Tech LLC
    Inventors: Andre Maxim Persidsky, Robin Alexander Ahlund
  • Patent number: 11109769
    Abstract: A blood pressure measuring apparatus includes: a triaxial acceleration sensor; an information output section which outputs information for guiding an arm of the person on which the blood pressure measuring apparatus is worn, to a pair of a first posture and a second posture between which a position of the wrist is different; a posture determiner which determines that the arm has been in each of the pair of the postures, based on an output signal of the triaxial acceleration sensor after the output of the information; and a physical feature information calculator which calculates physical feature information of the person based on moving acceleration information detected by the triaxial acceleration sensor in a period between when the arm is in one of the pair of the postures and when the arm is in the other of the pair of the postures.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: September 7, 2021
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Kentaro Mori, Shingo Yamashita
  • Patent number: 11109785
    Abstract: A needle including a cannula having a multi-beveled point is disclosed. The multi-beveled point includes a primary bevel, two middle bevels, and two tip bevels. Each of the middle bevels extends between the primary bevel and one of the tip bevels. The primary bevel is provided on the cannula at a first angle of inclination and a first angle of rotation, the two middle bevels are provided on the cannula at a second angle of inclination and a second angle of rotation, and the two tip bevels are provided on the cannula at a third angle of inclination and a third angle of rotation. The third angle of inclination is greater than the second angle of inclination, the second angle of inclination is greater than the first angle of inclination, and the second angle of rotation is equal to the third angle of rotation.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: September 7, 2021
    Assignee: Becton, Dickinson and Company
    Inventors: Matthew Siang Si Woo, Ravi Attri, Arun U. Nair, Bo Yon Lillian Yoo
  • Patent number: 11097427
    Abstract: A handheld device is provided. The handheld device includes: a functional body to be used by a user; a handle provided with a first detection circuit configured to detect a movement state of the handle to acquire hand tremor information about a hand of the user; a movable connector through which the functional body is movably connected to the handle in such a manner that the functional body is capable of moving relative to the handle; a movement mechanism connected to the functional body and configured to drive the functional body to move relative to the handle; and a control circuit configured to control an operating state of the movement mechanism in accordance with the hand tremor information acquired by the first detection circuit, to drive the functional body to perform compensating movement relative to the handle, thereby to maintain the functional body at a selected position.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: August 24, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Cheng Liu
  • Patent number: 11083385
    Abstract: The present invention relates to an apparatus for measuring blood circulation disorders, and a method therefor. The apparatus for measuring blood circulation disorders using a pulse wave transit time includes a measurement unit configured to measure a pulse wave and an electrocardiogram of a subject to be measured, a detection unit configured to detect time information of a peak value point of the electrocardiogram and a peak value point and a foot value point of the pulse wave, an operation unit configured to calculate an average pulse wave transit time using the time information of the peak value point of the electrocardiogram and the peak value point and the foot value point of the pulse wave and calculate a blood circulation disorder determination index using the average pulse wave transit time, and a diagnosis unit configured to diagnose a blood circulation disorder using the blood circulation disorder determination index.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: August 10, 2021
    Assignee: UNIVERSITY OF ULSAN FOUNDATION FOR INDUSTRY COOPERATION
    Inventors: Chae Hun Leem, Young Boum Lee, Moo Yong Rhee