Patents Examined by Jeff A. Burke
  • Patent number: 11882787
    Abstract: Methods and apparatus are disclosed for automatic sensitivity adjustment for an autonomous mower. An exemplary mower includes a drive system and one or more cameras. One or more processors are configured to generate a grass value by applying an image recognition algorithm to one or more images, instruct the drive system to autonomously adjust a velocity of current movement in response to determining that the grass value is less than or equal to a mowing threshold, determine a trigger rate that indicates how often the grass value is less than or equal to the mowing threshold within a predefined period of time, decrease the mowing threshold by a decrement in response to determining that the trigger rate is greater than an upper threshold rate, and increase the mowing threshold by an increment in response to determining that the trigger rate is less than a lower threshold rate.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: January 30, 2024
    Assignee: Hydro-Gear Limited Partnership
    Inventor: Eric S. Phanco
  • Patent number: 11884377
    Abstract: Methods and apparatuses for performing automated operations, such as installing fasteners at a plurality of locations along a joint, using a high-density robotic cell. A plurality of different tasks for a fastener installation operation is performed concurrently at selected locations of the plurality of locations using a plurality of single function end effectors positioned relative to the selected locations in a high-density setup.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 30, 2024
    Assignee: The Boeing Company
    Inventors: Harinder S. Oberoi, Kevin Marion Barrick, Charles Yuanxin Hu
  • Patent number: 11884294
    Abstract: In various examples, sensor data may be collected using one or more sensors of an ego-vehicle to generate a representation of an environment surrounding the ego-vehicle. The representation may include lanes of the roadway and object locations within the lanes. The representation of the environment may be provided as input to a longitudinal speed profile identifier, which may project a plurality of longitudinal speed profile candidates onto a target lane. Each of the plurality of longitudinal speed profiles candidates may be evaluated one or more times based on one or more sets of criteria. Using scores from the evaluation, a target gap and a particular longitudinal speed profile from the longitudinal speed profile candidates may be selected. Once the longitudinal speed profile for a target gap has been determined, the system may execute a lane change maneuver according to the longitudinal speed profile.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 30, 2024
    Assignee: NVIDIA Corporation
    Inventors: Zhenyi Zhang, Yizhou Wang, David Nister, Neda Cvijetic
  • Patent number: 11886198
    Abstract: Systems and methods for detecting blind spots using a robotic apparatus are disclosed herein. According to at least one exemplary embodiment, a robot may utilize a plurality of virtual robots or representations to determine intersection points between extended measurements from the robot and virtual measurements from a respective one of the virtual robot or representation to determine blind spots. The robot may additionally consider locations of the blind spots while navigating a route to enhance safety, wherein the robot may perform an action to alert nearby humans upon navigating near a blind spot along the route.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: January 30, 2024
    Assignee: Brain Corporation
    Inventor: Jean-Baptiste Passot
  • Patent number: 11884321
    Abstract: A vehicular self-diagnosis device includes first to third sensors that detect parameters to be used in steering control of a vehicle, first to third turn estimators that respectively estimate turn statuses of the vehicle based on a steering angle detected by the first sensor, vehicle behavior detected by the second sensor, and a lane curvature and a vehicle-versus-lane yaw angle of the vehicle relative to the lane curvature detected by the third sensor, an offset extractor that extracts first to third offset components respectively from signals indicating the estimated turn statuses, an offset-divergence-amount calculator that calculates a maximum divergence amount based on maximum and minimum values of the first to third offset components, and a comparison unit that compares the maximum divergence amount with a predetermined threshold value and determines that inconsistency exists among the first to third sensors if the maximum divergence amount exceeds the threshold value.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: January 30, 2024
    Assignee: SUBARU CORPORATION
    Inventor: Takashi Omikawa
  • Patent number: 11878716
    Abstract: The present application provides a method and apparatus for planning an autonomous vehicle, an electronic device and a storage medium, which relates to the field of autonomous driving. According to the technical solutions of the present application, time points of entering a vehicle-converging area can be accurately predicted according to traveling conditions of two parties, so that a driving behavior of the autonomous vehicle is controlled more accurately.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: January 23, 2024
    Inventors: Zhongpu Xia, Yaqin Chen, Yifeng Pan, Hongye Li
  • Patent number: 11880201
    Abstract: A method, apparatus, and system for determining average lane travel speeds is disclosed. A plurality of vehicles traveling in a same direction as the ADV in a plurality of lanes are identified. Over a first time period, the plurality of vehicles is tracked. At least a first quantity of representative vehicles within the plurality of vehicles that are representative of vehicles traveling in the lane over the first time period are identified. For each of the plurality of lanes, an average speed over the first time period of the representative vehicles associated with the lane is determined. A trajectory is planned for the ADV, wherein the planned trajectory moves toward a lane whose representative vehicles have a fastest average speed. Thereafter, control signals are generated to control operations of the ADV based on the planned trajectory.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: January 23, 2024
    Assignee: BAIDU USA LLC
    Inventor: Fan Zhu
  • Patent number: 11878408
    Abstract: A robotic system includes a multi-sectional show robot. The multi-sectional show robot includes a primary robot with a controller and one or more sensors. The one or more sensors are configured to acquire feedback indicative of an environment surrounding the primary robot. The multi-sectional show robot also includes a secondary robot configured to removably couple to the primary robot to transition the multi-sectional show robot between a disengaged configuration, in which the primary robot is decoupled from the secondary robot, and an engaged configuration, in which the primary robot is coupled to the secondary robot. The controller is configured to operate the primary robot based on the feedback and a first control scheme with the multi-sectional show robot in the disengaged configuration and to operate the primary robot based on a second control scheme with the multi-sectional show robot in the engaged configuration.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 23, 2024
    Assignee: Universal City Studios LLC
    Inventors: Aaron Chandler Jeromin, Akiva Meir Krauthamer, Timothy Fitzgerald Garnier, Elam Kevin Hertzler, Matthew Sean Pearse, Samuel James Knox, Lee Marvin Wilson, Kimberly Anne Humphreys, Cody Daniel Nichoson, Trace Andrew Dressen
  • Patent number: 11881116
    Abstract: In one example, a method of operating a plurality of aerial vehicles in an environment includes receiving, at a first command module of a first aerial vehicle navigating along a first flight path, sensor data from one or more sensors on board the first aerial vehicle. The sensor data reflects one or more characteristics of the environment. The method further includes determining, via the first command module, a change from a predetermined formation to a different formation for a second aerial vehicle based at least in part on the sensor data, where the predetermined formation and the different formation are relative to the first aerial vehicle. The method also including generating, via the first command module, control signals reflecting the change from the predetermined formation to the different formation and sending the control signals from the first aerial vehicle to the second aerial vehicle.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: January 23, 2024
    Assignee: Aurora Flight Sciences Corporation
    Inventors: John Brooke Wissler, Eugene H. Nahm
  • Patent number: 11878753
    Abstract: A steering assistance method based on a driver assistance system, for a transportation vehicle with a steering system with steering assistance for assisting a driver during the steering of the transportation vehicle by the steering system, in which a driving situation of the transportation vehicle is detected; acting upon the driving behavior of the transportation vehicle according to the driving situation, the supporting driver assistance system defining a nominal value for at least one regulating variable of the steering system and conditionally requesting same from the steering system by a driver assistance interface; and generating a corrective action by a monitoring function downstream of the driver assistance interface and upstream of the request to the steering system, in response to the nominal value not meeting a pre-defined permissible criterion. A steering assistance based on a driver assistance system and a transportation vehicle.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: January 23, 2024
    Inventors: Christopher Kreis, Tobias Rüger
  • Patent number: 11878752
    Abstract: A method for operating a steering system includes providing an electromechanical steering assistance having several redundant control paths. Each control path includes a control unit, a power unit and a winding circuit of a servomotor. A correcting-variable unit is provided in each control unit in order to make a correcting variable available, depending on input variables. The correcting variables of all of the correcting-variable units are averaged. A set correcting variable is made available by each control unit, depending on the averaged correcting variable. A device for operating a steering system and a steering system for steering wheels of a motor vehicle, are also provided.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: January 23, 2024
    Assignee: Volkswagen Aktiengesellschaft
    Inventors: Lars Stoltze, Yevgen Sklyarenko, Constantin Matthes, Hendrik Fricke
  • Patent number: 11878417
    Abstract: The embodiments relate to a robot and a server communicating with the robot, the robot being driven by using at least one among a driving wheel, a propeller, and a manipulator moving at least one joint.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: January 23, 2024
    Assignee: LG ELECTRONICS INC.
    Inventor: Wonhee Lee
  • Patent number: 11872979
    Abstract: A work vehicle includes a driving wheel provided in a machine body, a motor for inputting a rotational force to the driving wheel, a traveling control device for acquiring an output instruction for the motor according to an operation of a maneuvering lever, a traveling control unit for controlling driving of the motor in accordance with the output instruction, a battery for reserving energy source for driving the motor, a remaining amount detection section for detecting a remaining amount of the energy source in the battery, and a restriction section for restricting a maximum speed of the machine body to a preset speed irrespectively of the output instruction if the remaining amount of the energy source is equal to or smaller than a preset first threshold value.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: January 16, 2024
    Assignee: Kubota Corporation
    Inventor: Yasuhiro Manji
  • Patent number: 11874120
    Abstract: Traversing, by an autonomous vehicle, a vehicle transportation network, may include identifying a distinct vehicle operational scenario, wherein traversing the vehicle transportation network includes traversing a portion of the vehicle transportation network that includes the distinct vehicle operational scenario, communicating shared scenario-specific operational control management data associated with the distinct vehicle operational scenario with an external shared scenario-specific operational control management system, operating a scenario-specific operational control evaluation module instance including an instance of a scenario-specific operational control evaluation model of the distinct vehicle operational scenario, and wherein operating the scenario-specific operational control evaluation module instance includes identifying a policy for the scenario-specific operational control evaluation model, receiving a candidate vehicle control action from the policy for the scenario-specific operational contr
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 16, 2024
    Assignees: Nissan North America, Inc., The University of Massachusetts
    Inventors: Kyle Hollins Wray, Stefan Witwicki, Shlomo Zilberstein
  • Patent number: 11872007
    Abstract: Provided are systems and techniques for a medical procedure. For example, the system may include one or more robotic arms, an imaging device, a master controller, a viewer configured to render one or more digital images based on image data from the imaging device, at least one computer-readable memory having stored thereon executable instructions, and one or more processors. The one or more processors may be configured to execute the instructions to cause the system to: in a first mode of operation, cause movement of at least one of the robotic arms; and in a second mode of operation, cause the viewer to display an interactive menu and a graphical overlay on the one or more digital images.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: January 16, 2024
    Assignee: Auris Health, Inc.
    Inventors: Rishi Nikhil Purohit, Barry Nichols Gardiner, Daniel T. Wallace
  • Patent number: 11872994
    Abstract: Techniques for using a set of variables to estimate a vehicle velocity of a vehicle are discussed herein. A system may determine an estimated velocity of the vehicle using a minimization based on an initial estimated velocity, steering angle data and wheel speed data. The system may then control an operation of the vehicle based at least in part on the estimated velocity.
    Type: Grant
    Filed: October 30, 2021
    Date of Patent: January 16, 2024
    Assignee: Zoox, Inc.
    Inventors: Michael Carsten Bosse, Brice Rebsamen
  • Patent number: 11866057
    Abstract: The disclosure discloses a garage mode control unit, system and method capable of preventing vehicle miss-acceleration in narrow site. The control method comprises the steps that vehicle environment information is received; whether a vehicle is in the narrow site or not is judged according to the vehicle environment information; and the vehicle is controlled according to a garage mode when the condition that the vehicle is in the narrow site is judged.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: January 9, 2024
    Assignee: Robert Bosch GmbH
    Inventor: Wang Zhang
  • Patent number: 11865723
    Abstract: An exemplary robotic system includes a plurality of controllable joints and a controller. An exemplary control method provides for controlling the controllable joints by the controller. The control method provides for determining a configuration space for the robotic system and determining a reference movement path within the configuration space. The control method then provides for assigning a plurality of streamlines in the configuration space to yield a flow field based on the reference movement path. The control method then provides for measuring actual velocity vectors of the robotic system in the configuration space. The control method then provides for determining an error velocity vector based on a difference between the actual velocity vector and the desired velocity vector given by the flow field corresponding to the current robot configuration.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 9, 2024
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Andres Martinez-Guerra, Brian Lawson
  • Patent number: 11866036
    Abstract: The invention relates to a driver assistance system for a motor vehicle, the motor vehicle and a method for operating same. In some embodiments, an obstacle is detected based on environmental data and a risk of collision is determined in consideration of driving state data. Further, an evasion trajectory for preventing a collision of the motor vehicle with the obstacle is determined. The driver assistance system is configured to detect another oncoming vehicle for which the risk of collision is greater than a predefined first threshold value as the obstacle. Further, the driver assistance system is configured to check whether a control action of a driver of the motor vehicle is guiding same along the determined evasion trajectory and, if this is not the case, to modify the control action of the driver automatically such that the motor vehicle is guided along the determined evasion trajectory by the modified control action.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: January 9, 2024
    Assignee: VOLKSWAGEN AKTIENGESELLSCHAFT
    Inventors: Timo Klingemann, Bastian Schmidt, Maike Wall, Michael Wonke, Jörn Fauck
  • Patent number: 11869374
    Abstract: A system includes a reception unit to receive current flight data of the aircraft and current meteorological data, a data processing unit to perform an iterative computation to determine, as a function at least of a set of predetermined rules, of a set of constraints and of current values including current meteorological data, an optimal flight trajectory making it possible to generate a dissipation of the energy of the aircraft to bring it, at a stabilized final position, into a final energy state with a minimum ground distance, the optimal flight trajectory defining positions at which actions must be implemented on the aircraft, and a data transmission unit to transmit at least the minimum distance to at least one user system.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: January 9, 2024
    Assignee: Airbus Operations SAS
    Inventors: Jean-Claude Mere, Ramon Andreu Altava