Patents Examined by Jeffrey Lipitz
  • Patent number: 9220570
    Abstract: Described herein are an apparatus and methods for automating subtasks in surgery and interventional medical procedures. The apparatus consists of a robotic positioning platform, an operating system with automation programs, and end-effector tools to carry out a task under supervised autonomy. The operating system executes an automation program, based on one or a fusion of two or more imaging modalities, guides real-time tracking of mobile and deformable targets in unstructured environment while the end-effector tools execute surgical interventional subtasks that require precision, accuracy, maneuverability and repetition. The apparatus and methods make these medical procedures more efficient and effective allowing a wider access and more standardized outcomes and improved safety.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: December 29, 2015
    Assignee: Children's National Medical Center
    Inventors: Peter C. Kim, Axel Krieger, Yonjae Kim, Azad Shademan, Simon Leonard
  • Patent number: 9220885
    Abstract: A placement device for a medical patch includes an alignment guide having a shaft with a first end having a first anatomical alignment marker and a second end having a second anatomical alignment marker, a swinging gate both pivotally and rotationally coupled with the first end of the shaft for selectively pivoting the gate toward and away from the shaft and rotating the gate between opposite sides of the shaft, whereby the gate has first and second major faces and a first opening extending through the gate between the first and second major faces. The placement device includes a spacer for selectively adjusting spacing between the gate and the first end of the shaft, and a flexible diaphragm having a flexible dome disposed within the first gate opening. At least one magnet is located in the center of the flexible dome for holding the medical patch within the flexible dome.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: December 29, 2015
    Assignee: Ethicon, Inc.
    Inventors: Stephen B. Wahlgren, Andrea Slater Tomko, Glenn H. Stahl, Andrew Joseph March, Rochelle Kleinberg, Karin Elise Taylor, Martin J. Nohilly, Michael William Ammerman
  • Patent number: 9211094
    Abstract: Apparatus and method for detecting metal disturbance during a medical procedure has a probe having an insertion tube, a joint, and a joint sensor for sensing a position of the insertion tube. The joint sensor has first and second subassemblies as magnetic transducers. A processor is used for measuring force using the joint sensor, and a threshold field value stored therein. The processor receives and processes one or more signals output by either the first and second subassemblies responsive to a magnetic field so as to detect changes in a position of insertion tube. The processor compares the sensed field value to the threshold field value and identifies a presence of a metal object when the sensed field value is below the threshold field value.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 15, 2015
    Assignee: BIOSENSE WEBSTER (ISRAEL), LTD.
    Inventors: Doron Moshe Ludwin, Robert Alan Mest, Dror Levy, Aharon Turgeman
  • Patent number: 9205277
    Abstract: A system for influencing a state of a user includes a light source for emitting light influencing the state of the user. The system includes a light controller selectively controlling the emission of the light and an analysis engine which provides a signal to the light controller indicating a desired emission of the light. The system selectively directs blue light from the light source onto a material that retransmits it as a light different than blue light.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: December 8, 2015
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Xiao-Fan Feng, Hiromi Katoh
  • Patent number: 9198685
    Abstract: A surgical instrument includes a hollow cylindrical member having a flexible region along at least a part of the hollow cylindrical member and a malleable tubing disposed over at least an outer surface of the flexible region of the hollow cylindrical member. The flexible region and the malleable tubing disposed over the flexible region can bend multiple times. The malleable tubing can maintain a bent orientation until the malleable tubing is re-bent by a user. The surgical instrument also includes connections that prevent the malleable tubing from moving longitudinally relative to the hollow cylindrical member. The malleable tubing may be made of various materials, one example of which is anodized, annealed aluminum.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: December 1, 2015
    Assignee: GYRUS ENT, L.L.C.
    Inventors: Kevin C. Edwards, Michael J. Bennett
  • Patent number: 9198730
    Abstract: A robotic control system is placed in clutch mode so that a slave manipulator holding a surgical instrument is temporarily disengaged from control by a master manipulator in order to allow manual positioning of the surgical instrument at a surgical site within a patient. Control systems implemented in a processor compensate for internally generated frictional and inertial resistance experienced during the positioning, thereby making movement more comfortable to the mover, and stabler from a control standpoint. Each control system drives a joint motor in the slave manipulator with a saturated torque command signal which has been generated to compensate for non-linear viscous forces, coulomb friction, cogging effects, and inertia forces subjected to the joint, using estimated joint angular velocities, accelerations and externally applied torques generated by an observer in the control system from sampled displacement measurements received from a sensor associated with the joint.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: December 1, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin
  • Patent number: 9192779
    Abstract: A handpiece can treat biological tissue using electromagnetic radiation, which can be substantially fluorescent light. The handpiece includes a source of electromagnetic radiation and a waveguide. The waveguide is adjacent the source, receives electromagnetic radiation from the source, and delivers the electromagnetic radiation to the biological tissue. The handpiece also includes a system for moving a fluorescent substance through the waveguide. The fluorescent substance includes a fluid base and a fluorescing agent and is capable of modulating at least one property of the electromagnetic radiation. A method is described for removing the fluorescing agent from the fluorescing substance and replacing it with a second, different fluorescing agent.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: November 24, 2015
    Inventor: Morgan Lars Ake Gustavsson
  • Patent number: 9192442
    Abstract: An apparatus has a pump module providing pump energy, a resonator and a controller. The resonator includes a gain medium receiving the pump energy from the pump module and producing light; reflective surfaces reflecting light produced by the gain medium back toward the gain medium; and a variable light attenuator receiving light produced by the gain medium. The controller controls the amount of light attenuated by the variable light attenuator such that the apparatus emits windows of pulses of laser light at spaced time intervals, each window containing a plurality of pulses of laser light and each interval between windows being larger than an interval between pulses within a window. The emitted windows of pulses of laser light heat tissue to a temperature that causes coagulation without vaporization.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: November 24, 2015
    Assignee: AMS Research Corporation
    Inventors: Hyun Wook Kang, Raymond Adam Nemeyer, Michael Ray Hodel
  • Patent number: 9168102
    Abstract: A method and apparatus for providing an unsterilized item to a sterile field is disclosed. The item can include a human input device. The sterile field can be in an operating room.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: October 27, 2015
    Assignee: Medtronic Navigation, Inc.
    Inventors: Eric Ryterski, Lance Kendrick
  • Patent number: 9168175
    Abstract: A method for using a laser to create a pocket in a patient's cornea is provided. The pocket is created using a femtosecond or a nanosecond laser. The laser ablates tissue within the cornea in a specific shape. The shape of the pocket can be determined by software to custom program a three-dimensional path of the laser. A variety of corneal pocket configurations or computer programmed shapes can be used accommodate various corneal lens shapes and sizes. An intracorneal lens can then be inserted into the pocket, in order to correct the patient's vision.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 27, 2015
    Inventor: Vladimir Feingold
  • Patent number: 9168388
    Abstract: Embodiments of the present disclosure provides systems, devices, and methods for non-invasively modifying, maintaining, or controlling local tissue optical properties. Methods and devices of the disclosure may be used for optically clearing tissue, for example, for diagnostic and/or therapeutic purposes. A method of optically clearing a tissue may comprise contacting the tissue with an optical clearing device having a base, an array of pins fixed to one side of the base, a brim fixed to the base, an inlet port in the base, an exit port in the base, and a handpiece interface tab fixed to the side of the base opposite the array of pins, applying a mechanical force to the tissue, and illuminating said tissue with at least one wavelength of light through the optical clearing device. A method may further comprise controlling the temperature of the tissue illuminated.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: October 27, 2015
    Assignee: The Board of Regents, the University of Texas System
    Inventors: Christopher G. Rylander, Thomas E. Milner, Oliver Stumpp, J. Stuart Nelson
  • Patent number: 9155905
    Abstract: A handpiece can treat biological tissue using electromagnetic radiation, which can be substantially fluorescent light. The handpiece includes a source of electromagnetic radiation and a waveguide. The waveguide is adjacent the source, receives electromagnetic radiation from the source, and delivers the electromagnetic radiation to the biological tissue. The handpiece also includes a system for moving a fluorescent substance through the waveguide. The fluorescent substance includes a fluid base and a fluorescing agent and is capable of modulating at least one property of the electromagnetic radiation. A method is described for removing the fluorescing agent from the fluorescing substance and replacing it with a second, different fluorescing agent.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: October 13, 2015
    Inventor: Morgan Lars Ake Gustavsson
  • Patent number: 9149646
    Abstract: A method and apparatus for controlling a process of injury therapy includes monitoring a Nitric Oxide level of the injury, generating a controlling signal by comparing the Nitric oxide level with a predefined threshold, and adjusting a dosage of light for the injury therapy according to the controlling signal.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: October 6, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Payal Keswarpu, Balakrishnan Srinivasan, Srinivas Rao Kudavelly
  • Patent number: 9149330
    Abstract: A catheter is adapted to ablate tissue and provide lesion qualitative information on a real time basis, having an ablation tip section with a generally omni-directional light diffusion chamber with one openings to allow light energy in the chamber to radiate the tissue and return to the chamber. The chamber is irrigated at a positive pressure differential to continuously flush the opening with fluid. The light energy returning to the chamber from the tissue conveys a tissue parameter, including without limitation, lesion formation, depth of penetration of lesion, cross-sectional area of lesion, formation of char during ablation, recognition of char during ablation, recognition of char from non-charred tissue, formation of coagulum around the ablation site, differentiation of coagulated from non-coagulated blood, differentiation of ablated from healthy tissue, tissue proximity, and recognition of steam formation in the tissue for prevention of steam pop.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 6, 2015
    Assignee: Biosense Webster, Inc.
    Inventors: Shiva Sharareh, Chad Allen Lieber, Jeffrey William Schultz
  • Patent number: 9144467
    Abstract: A method of transmitting controller motion from a robotic manipulator to a surgical instrument includes rotating a plate included in the robotic manipulator. The plate has a driving surface that bears against an inner gimbal of a gimbal assembly included in the surgical instrument. The plate is rotated about a center of motion that coincides with an intersection of two rotational axes of the gimbal assembly.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 29, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Thomas G. Cooper, Anthony McGrogan
  • Patent number: 9138351
    Abstract: Systems and methods of photoaltering a region of a material using a pulsed laser beam. The method includes scanning the pulsed laser beam in a first portion of the region with a first pattern, scanning the pulsed laser beam in a second portion of the region with a second pattern, and separating a flap of the material at the region. The system includes a laser, a controller selecting at least first and second patterns, and a scanner operable in response to the controller. The first pattern has a first maximum acceleration associated with the second portion, and the second pattern has a second maximum acceleration associated with the second portion. The second maximum acceleration is less than the first maximum acceleration. The scanner scans the pulsed laser beam from the laser in the first portion with the first pattern and in the second portion with the second pattern.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 22, 2015
    Assignee: AMO Development, LLC
    Inventors: Ferenc Raksi, Ruben Zadoyan, Marcel Bouvier, Guy V. Holland
  • Patent number: 9138294
    Abstract: A system and method are provided that are capable of selectively treating a vein using photothermolysis techniques, where an electromagnetic radiation is applied to tissue containing the vein. The radiation can be selected so that it may be more effectively absorbed by veins as compared to arteries. Thus, unwanted thermal damage to arteries in the vicinity of the vein being treated can be reduced or avoided. The radiation can have a frequency of approximately 654 nm, which can provide a ratio of absorption by veins to absorption by arteries of about 3.7. Other wavelengths near 654 nm may be provided, for example, which can have an absorption ratio greater than, e.g., about 3.3 to 3.6.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 22, 2015
    Assignee: The General Hospital Corporation
    Inventors: Richard R. Anderson, Iris Kedar Rubin, William A. Farinelli
  • Patent number: 9125725
    Abstract: A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision, and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 8, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9119704
    Abstract: A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 1, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9119703
    Abstract: A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision, and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 1, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen