Patents Examined by Jennifer McNeil
  • Patent number: 8728630
    Abstract: Bipolar wave current, is used to electrodeposit a nanocrystalline grain size. Polarity Ratio is the ratio of absolute value of time integrated amplitude of negative and positive polarity current. Grain size can be controlled in alloys of two or more components, at least one of which is a metal, and at least one of which is most electro-active. Typically, the more electro-active material is preferentially lessened during negative current. Current density, duration of pulse portions, and bath composition are determined with reference to relations showing grain size as a function of deposit composition, and deposit composition as a function of Polarity Ratio, or a single relation showing grain size as a function of Polarity ratio. A specified size can be achieved by selecting a corresponding Polarity Ratio. Coatings can be layered, each having an average grain size, which can vary layer to layer and also graded through a region.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: May 20, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrew J. Detor, Christopher A. Schuh
  • Patent number: 8507099
    Abstract: A coated article is provided, having a coating supported by a glass substrate where the coating includes at least one color and/or reflectivity-adjusting absorber layer. The absorber layer(s) allows color tuning, and reduces the glass side reflection of the coated article and/or allows sheet resistance of the coating to be reduced without degrading glass side reflection. In certain example embodiments the absorber layer is provided between first and second dielectric layers which may be of substantially the same material and/or composition. In certain example embodiments, the coated article is capable of achieving desirable transmission, together with desired color, low reflectivity, and low selectivity, when having only one infrared (IR) reflecting layer of silver and/or gold. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, monolithic windows, or the like.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 13, 2013
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Hartmut Knoll, Jochen Butz, Uwe Kriltz, Bernd Disteldorf, Jose Ferreira, Pierrot Pallotta
  • Patent number: 8507111
    Abstract: Provided are transparent electroconductive films and transparent electroconductive glass substrates, which contain a transparent electroconductive film and a metal thin film over the glass substrate.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: August 13, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kazuyoshi Inoue, Shigekazu Tomai, Masato Matsubara
  • Patent number: 8507105
    Abstract: This invention relates to rolls for use in or in contact with molten metal comprising a roll drum having an outer peripheral surface and a thermally sprayed coating on the outer peripheral surface of said roll drum, said thermally sprayed coating comprising from about 66 to about 88 weight percent of tungsten, from about 2.5 to about 6 weight percent of carbon, from about 6 to about 20 weight percent of cobalt, and from about 2 to about 9 weight percent of chromium; a process for preparing the rolls; a method for forming a metal layer on a metal sheet utilizing the rolls, e.g., galvanization; and a thermal spray powder for coating the outer peripheral surface of the rolls.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: August 13, 2013
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: William Jarosinski, John Quets, Daming Wang, Vladimir Belov, Ardy Simon Kleyman
  • Patent number: 8501296
    Abstract: Disclosed are high-porosity cordierite honeycomb substrates having a narrow pore size distribution, little or no microcracking, and high thermal shock resistance. The porous ceramic honeycomb substrates generally comprise a primary cordierite ceramic phase as defined herein. Also disclosed are methods for making and using the cordierite substrates.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: August 6, 2013
    Assignee: Corning Incorporated
    Inventor: Gregory Albert Merkel
  • Patent number: 8501088
    Abstract: To provide a solder alloy, a solder ball and an electronic member having a solder bump, used for connection with a mother board or the like, having a melting temperature of less than 250° C. for the solder alloy, achieving high drop impact resistance required in mobile devices or the like. A solder alloy is used which consists of not less than 0.1 mass ppm of boron and not greater than 200 mass ppm of boron and a remainder comprising substantially not less than 40% by mass of Sn, in which its melting temperature is less than 250° C.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 6, 2013
    Assignees: Nippon Steel & Sumikin Materials Co., Ltd., Nippon Micrometal Corporation
    Inventors: Takayuki Kobayashi, Tsutomu Sasaki, Masamoto Tanaka, Katsuichi Kimura
  • Patent number: 8501297
    Abstract: Disclosed is a honeycomb structure for non-hermetic rotor-stator and rotor-rotor seals in turbo machines. Said honeycomb structure comprises a plurality of at least predominantly radially oriented honeycomb cells which are separated by cell walls, are open on one side, cooperate with at least one sharp sealing edge that rotates relative to the honeycomb structure, and can yield relative to the sharp sealing edge by being deformed and/or material being removed therefrom when being touched. The walls of the honeycomb cells have holes according to a defined perforation pattern.
    Type: Grant
    Filed: June 21, 2008
    Date of Patent: August 6, 2013
    Assignee: MTU Aero Engines AG
    Inventor: Reinhold Meier
  • Patent number: 8497009
    Abstract: A honeycomb structure 10 of the present invention is provided with porous partition walls 12 made of a ceramic material containing cordierite as a main crystal phase and separating and forming a plurality of cells 14 functioning as fluid passages. The partition walls 12 contain sodium at 0.08 to 0.15 mass % in terms of sodium oxide. A honeycomb structure having a large average pore size can be provided.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: July 30, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Yasushi Noguchi, Yukari Nakane
  • Patent number: 8497026
    Abstract: A porous metal foil of the present invention comprises a two-dimensional network structure composed of metal fibers. This porous metal foil has superior properties and can be obtained in a highly productive and cost effective manner.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: July 30, 2013
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Tetsuhiro Matsunaga, Hajime Watanabe, Joe Nishikawa, Tetsuro Sato
  • Patent number: 8496718
    Abstract: A silicon nitride cutting tool comprising a sintered product is disclosed. The sintered product comprises silicon nitride, at least one rare earth element compound, and a magnesium compound. The silicon nitride cutting tool further comprises a surface region and an inside region comprising the sintered product with varying content ratios of component compounds to provide enhanced wear and fracture resistance.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: July 30, 2013
    Assignee: Kyocera Corporation
    Inventors: Takashi Watanabe, Tatsuyuki Nakaoka, Takero Fukudome, Shuichi Tateno, Hiroshi Yoshimitsu
  • Patent number: 8491837
    Abstract: A Ni-based brazing composition at least containing, in mass %, 1.0% or more and 1.3% or less of B, 4.0% or more and 6.0% or less of Si, and the balance consisting of Ni and unavoidable impurities, wherein the brazing composition forms wherein the brazing composition forms dispersed phase containing B or Si in a metal texture after the brazing, and a maximum length of the dispersed phase is 30 ?m or less.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: July 23, 2013
    Assignee: IHI Corporation
    Inventors: Naoki Oiwa, Sadao Nishikiori, Tsukasa Wakabayashi, Junji Tsuji
  • Patent number: 8486525
    Abstract: An application for an arced sealing tape has a bottom interfaced to an inner wall. The surface of the inner wall that is closest to a center point of the arc has an adhesive and the bottom surface of the bottom also has an adhesive.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 16, 2013
    Inventor: David G. Segur
  • Patent number: 8481145
    Abstract: A sintered cubic boron nitride tool can perform stable machining without causing any defect for a long lifetime even under a high-load cutting condition and a high-efficiency cutting condition.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 9, 2013
    Assignee: Tungaloy Corporation
    Inventor: Katsuhisa Ohtomo
  • Patent number: 8475946
    Abstract: The present invention includes a method of preparing a ceramic precursor article, the ceramic precursor made thereby, a method of making a ceramic article and an article made by that method. It also includes a method of replicating a ceramic shape.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: July 2, 2013
    Assignee: Bowling Green State University
    Inventors: Sebastien Dion, John Balistreri, Amber Reed
  • Patent number: 8470458
    Abstract: A workpiece, such as a turbine engine component, comprises a substrate, a thermal barrier coating on the substrate, and a hard erosion barrier deposited over the thermal barrier coating. The erosion barrier preferably has a Vickers hardness in the range of from 1300 to 2750 kg/mm2. The erosion barrier may be formed from aluminum oxide, silicon carbide, silicon nitride, or molybdenum disilicide. The erosion barrier may be formed using either an electrophoretic deposition process or a slurry process.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: June 25, 2013
    Assignee: United Technologies Corporation
    Inventors: Joshua Persky, David A Litton, David A Lambert
  • Patent number: 8470430
    Abstract: Provided is a honeycomb structure in which as compared with partition walls of an end face side portion of all inlet of a fluid, partition walls of an end face side portion of an outlet of the fluid satisfy at least one of conditions of (1) a heat conductivity being relatively high, (2) a heat capacity being relatively large, (3) a bending strength being relatively high and (4) a porosity being relatively low. In this honeycomb structure, the melting or thermal shock breakdown of the partition walls does not easily occur, and the structure is suitably used as a DPF.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 25, 2013
    Assignee: NGK Insulators, Inc.
    Inventor: Takuya Hiramatsu
  • Patent number: 8465847
    Abstract: This invention discloses a method, using pure niobium as a transient liquid reactive braze material, for fabrication of cellular or honeycomb structures, wire space-frames or other sparse builtup structures or discrete articles using Nitinol (near-equiatomic titanium-nickel alloy) and related shape-memory and superelastic alloys. Nitinol shape memory alloys (SMAs), acquired in a form such as corrugated sheet, discrete tubes or wires, may be joined together using the newly discovered joining technique. Pure niobium when brought into contact with nitinol at elevated temperature, liquefies at temperatures below the melting point and flows readily into capillary spaces between the elements to be joined, thus forming a strong joint.
    Type: Grant
    Filed: August 7, 2010
    Date of Patent: June 18, 2013
    Assignees: The Regents of the University of Michigan, Board of Trustees of Michigan State University
    Inventors: John A. Shaw, David S. Grummon
  • Patent number: 8460799
    Abstract: A high-temperature resistant component for, e.g., a gas turbine hot part, includes an alloy substrate containing Ni, Co, or Fe as the principal component, and a thermal barrier coating formed over the surface of the substrate via a bond coat. The thermal barrier coating includes a porous thermal-barrier layer made of ceramic and an environmental barrier layer with corrosion resistance. An impregnated layer is provided between the environmental barrier layer and the thermal barrier layer. In the impregnated layer, the thermal barrier layer is impregnated with a part of the environmental barrier layer. The thermal barrier layer is made of a porous zirconia layer, and the environmental barrier layer includes silica as the principal component. The porous zirconia layer has pores impregnated with the part of the environmental barrier layer. As a result, the high-temperature resistant component has excellent corrosion resistance and excellent heat resistance.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: June 11, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Arikawa, Akira Mebata, Yoshitaka Kojima, Kunihiro Ichikawa, Hiroshi Haruyama
  • Patent number: 8460804
    Abstract: The object of the invention is to create a hard-material coating for glass ceramics and glasses, a coating which is particularly temperature-resistant and protects the substrate from mechanically caused damage as well as chemical attack. For this purpose, a silicon nitride coating is proposed, which has a structure-free morphology in the volume.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: June 11, 2013
    Assignee: Schott AG
    Inventors: Christian Henn, Falk Gabel
  • Patent number: 8455095
    Abstract: An article includes a substrate; and a color layer deposited on the substrate, wherein the color layer has an L* value between about 28 to about 32, an a* value between about ?1 to about 1, and a b* value between about ?1 to about 1 in the CIE L*a*b* color space.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: June 4, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Juan Zhang