Patents Examined by Jennifer Michener
  • Patent number: 8410354
    Abstract: Higher conversion efficiency and productivity of photoelectric conversion devices. A semiconductor layer including a first and second crystal regions grown in the layer-deposition direction is provided between an impurity semiconductor layer containing an impurity element imparting one conductivity type and an impurity semiconductor layer containing an impurity element imparting a conductivity type opposite to the one conductivity type. The first crystal region is grown from the interface between one of the impurity semiconductor layers and the semiconductor layer. The second crystal region is grown toward the interface between the semiconductor layer and the other of the impurity semiconductor layers from a position which is away from the interface between the one of the impurity semiconductor layers and the semiconductor layer. The semiconductor layer including the first and second crystal regions which exist in an amorphous structure forms the main part of a region for photoelectric conversion.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: April 2, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8409976
    Abstract: Photovoltaic modules comprise solar cells having doped domains of opposite polarities along the rear side of the cells. The doped domains can be located within openings through a dielectric passivation layer. In some embodiments, the solar cells are formed from thin silicon foils. Doped domains can be formed by printing inks along the rear surface of the semiconducting sheets. The dopant inks can comprise nanoparticles having the desired dopant.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: April 2, 2013
    Assignee: NanoGram Corporation
    Inventor: Henry Hieslmair
  • Patent number: 8410351
    Abstract: A solar power system concurrently generates electricity and a heated transparent fluid while maintaining the solar cells at an optimum temperature and optimizing the heat transfer by matching the refractive index of the secondary sunlight concentrator to the transparent fluid. A solar tracker aligns a primary sunlight concentrator to collect sunlight and directs the sunlight and a system for transferring solar heat to a transparent fluid and into a solar power electrical generating system. The concentrated sunlight transfers solar heat to a transparent fluid via first pass through the transparent fluid. The concentrated sunlight is further concentrated to raise its temperature by passing the concentrated sunlight through a secondary sunlight concentrator, and then passed again through the transparent fluid to transfer heat. The solar energy diminished concentrated sunlight strikes a solar cell array to generate electricity.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: April 2, 2013
    Inventor: Bingwu Gu
  • Patent number: 8409413
    Abstract: A device for sampling liquid samples is provided comprising a capillary-active channel, a sampling site, and a determination site. The capillary-active channel is configured for transporting a sample from the sampling site to the determination site. The capillary-active channel is substantially formed by a carrier, a cover and an intermediate layer located between the carrier and cover. The carrier protrudes beyond the cover in the area of the sampling site. The intermediate layer is displaced towards the back in the direction of the determination site in the area of the sampling site so that the carrier as well as the cover protrude beyond the intermediate layer. The device allows sample to be applied from above onto the exposed area of the carrier in the area of the sampling site and also allows sample to be applied from the side.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: April 2, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Volker Gerstle, Volker Unkrig, Manfred Augstein
  • Patent number: 8404964
    Abstract: It is desirable to provide a variable light condensing lens apparatus and a solar cell apparatus provided therewith in a simple configuration, yet capable of reducing dependency of light condensing efficiency on the angle of incidence of light and thereby improving power generation efficiency of the solar cell apparatus. The variable light condensing lens apparatus according to the present disclosure is provided with a translucent support having a hydrophilic photocatalyst on a surface thereof and a first translucent liquid supported on the surface of the translucent support in contact therewith and the solar cell apparatus according to the present disclosure is provided with a solar cell element, a pair of electrodes connected to the solar cell element and the variable light condensing apparatus according to the present disclosure disposed opposed to the solar cell element.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: March 26, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Takahisa Kusuura
  • Patent number: 8404960
    Abstract: A device and method wherein a thermo electric generator device is disposed between stacks of a multiple level device, or is provided on or under a die of a package and is conductively connected to the package. The thermo electric generator device is configured to generate a voltage by converting heat into electric power. The voltage which is generated by the thermo electric generator can be recycled back into the die itself, or to a higher-level unit in the system, even to a cooling fan.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: March 26, 2013
    Assignee: LSI Corporation
    Inventors: Zachary A. Prather, Steven E. Reder, Michael J. Berman
  • Patent number: 8404965
    Abstract: An apparatus for receiving energy is disclosed. The apparatus comprises a support base and a plurality of cells. The support base comprises an electric terminal. The plurality of cells are mounted to the support base. Further, each of the plurality of cells is electrically connected to the electric terminal disposed on the support base. In an embodiment each cell may be in the shape of a rhombus. Further, each of the plurality of cells may be oriented in a non-parallel relationship with each neighboring cell.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: March 26, 2013
    Inventor: Casey Dame
  • Patent number: 8395042
    Abstract: Efficient photovoltaic devices with quantum dots are provided. Quantum dots have numerous desirable properties that can be used in solar cells, including an easily selected bandgap and Fermi level. In particular, the size and composition of a quantum dot can determine its bandgap and Fermi level. By precise deposition of quantum dots in the active layer of a solar cell, bandgap gradients can be present for efficient sunlight absorption, exciton dissociation, and charge transport. Mismatching Fermi levels are also present between adjacent quantum dots, allowing for built-in electric fields to form and aid in charge transport and the prevention of exciton recombination.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: March 12, 2013
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Neil Dasgupta, Friedrich B. Prinz, Timothy P. Holme, James F Mack
  • Patent number: 8395043
    Abstract: A solar cell includes a photoactive, semiconductive absorber layer configured to generate excess charge carriers of opposed polarity by light incident on a front of the absorber layer during operation. The absorber layer is configured to separate and move, via at least one electric field formed in the absorber layer, the photogenerated excess charge carriers of opposed polarity over a minimal effective diffusion length Leff,min. The absorber layer has a thickness Lx of 0<Lx?Leff,min. First contact elements are configured to remove the excess charge carriers of a first polarity on a rear of the absorber layer. Second contact elements are configured remove the excess charge carriers of a second polarity on the rear of the absorber layer. At least one undoped, electrically insulating second passivation region is disposed in an alternating, neighboring arrangement with a first passivation region on the rear of the absorber layer.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: March 12, 2013
    Assignee: Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH
    Inventors: Rolf Stangl, Bernd Rech
  • Patent number: 8388825
    Abstract: I provide a non-toxic protein and protein compound conversion coated metal article, a painted or plated non-toxic protein and protein compound conversion coated metal article, the aqueous coating solution to provide the in-situ conversion protective coating, and a process of preparing the article. The article is a metal selected from the group consisting of aluminum and aluminum alloy. The solution has a pH of 3.0 to 12.0 and preferably 4.0 to 10.0 and a protein and protein compound concentration of 0.1 to 10% by weight and the protein and protein compound have a molecular mass of 16,700 to 1,000,000.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 5, 2013
    Assignee: Sanchem, Inc.
    Inventor: John W. Bibber
  • Patent number: 8389849
    Abstract: A solar battery panel wherein cracking of solar battery cells can be reduced without reducing the power generating capacity per unit area. The solar battery panel consists of a plurality of solar battery cells (1) connected in series by connecting surface electrode tabs (104) to rear electrode tabs (105). In the solar battery panel, a tab-to-tab connecting portion (107) and a tab-to-cell connecting portion (106) are arranged via a gap (108) in the solar battery cell arrangement direction (162) without these portions overlapping each other. One end portion (107a) of the tab-to-tab connecting portion (107) exists within a region of a non-light receiving surface (3).
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 5, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Daisuke Echizenya, Masashi Nakamura, Junichi Yasuda, Teruto Miura, Yoshikazu Ikuta
  • Patent number: 8389853
    Abstract: Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises: a first electrically conductive layer; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution, an asphaltene dye, and a second electrically conductive layer.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: March 5, 2013
    Assignees: Board of Regents, The University of Texas System, Sandia Corporation
    Inventors: Russell R. Chianelli, Karina Castillo, Vipin Gupta, Ali M. Qudah, Brenda Torres, Rajab Emhemed Abujnah
  • Patent number: 8388826
    Abstract: I provide a non-toxic protein and protein compound conversion coated metal article, a painted or plated non-toxic protein and protein compound conversion coated metal article, the aqueous coating solution to provide the in-situ conversion protective coating, and a process of preparing the article. The article is a metal selected from the group consisting of magnesium, magnesium alloy, beryllium and beryllium alloy. The solution has a pH of 3.0 to 12.0 and preferably 4.0 to 10.0 and a protein and protein compound concentration of 0.1 to 10% by weight and the protein and protein compound have a molecular mass of 16,700 to 1,000,000.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 5, 2013
    Assignee: Sanchem, Inc.
    Inventor: John W. Bibber
  • Patent number: 8389852
    Abstract: An electrode structure is provided for use in an electronic device. In certain example embodiments, an electrode structure includes a supporting glass substrate (e.g., soda-lime silica based float glass), a buffer layer (e.g., SixNy), and a conductive electrode (e.g., Mo) provided in this order. The buffer layer is advantageous in that it prevents or reduces sodium (Na) migration from the glass substrate into semiconductor layer(s) of the electronic device.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: March 5, 2013
    Assignee: Guardian Industries Corp.
    Inventor: Alexey Krasnov
  • Patent number: 8383926
    Abstract: The thermoelectric structure is formed by a network of wires oriented substantially in a weft direction of the structure. It comprises first and second conducting wires of different kinds, interwoven to form cold and hot junctions distributed respectively in a top plane and a bottom plane. The junctions are alternately cold and hot along any one conducting wire. The thermoelectric structure comprises at least one high dielectric wire in the top plane, and at least one low dielectric wire in the bottom plane. The dielectric wires are interwoven with the first and second conducting wires so as to keep the top and bottom planes at a distance from one another.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: February 26, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Marc Plissonnier, Charles Salvi, Thierry Lanier, Denis Coulaux
  • Patent number: 8383927
    Abstract: A back metal electrode, a bottom cell using microcrystalline silicon for a photoelectric conversion layer, a front cell using amorphous silicon for a photoelectric conversion layer, and a transparent front electrode are formed in this order on a supporting substrate. At least one of the concentration of impurities contained in the front photoelectric conversion layer and the concentration of impurities contained in the bottom photoelectric conversion layer is controlled such that the concentration of impurities in the bottom photoelectric conversion layer is higher than the concentration of impurities in the front photoelectric conversion layer. Impurities do not include a p-type dopant or an n-type dopant but are any one, two, or all of carbon, nitrogen, and oxygen.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 26, 2013
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Masaki Shima, Kunimoto Ninomiya
  • Patent number: 8382964
    Abstract: A solar-powered pool skimmer is disclosed. The solar-powered skimmer may include lid having an upper surface and a lower surface, and a solar cell affixed to the upper surface of the lid. A pair of electrodes is electrically affixed to the terminals of the solar cell, and is each capable of being stored in a retracted position and moved to an extended position.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: February 26, 2013
    Inventor: Kevin Boedecker
  • Patent number: 8383291
    Abstract: One embodiment includes three-dimensional hydrophilic porous structures for fuel cell collector plates.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: February 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Tao Xie
  • Patent number: 8383930
    Abstract: Disclosed is a solar cell including a passivation film formed on a light-receiving surface of a silicon substrate, and an antireflection film formed on the passivation film, wherein the passivation film has a refractive index higher than that of the antireflection film. The passivation film and the antireflection film can each be made of a silicon nitride film.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: February 26, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takayuki Isaka, Yoshiya Abiko, Yoshifumi Tonomura
  • Patent number: 8378656
    Abstract: A photovoltaic (PV) energy system includes a pulsed bus defined by a non-zero average value voltage that is proportional to a rectified utility grid AC supply voltage. The PV energy system also includes a plurality of PV modules, each PV module including a bucking circuit configured to convert a corresponding PV voltage into a pulsing current, wherein the pulsating bus is configured to sum the pulsing currents produced via the plurality of PV modules such that a resultant pulsing current is injected into the pulsating bus in phase with the non-zero average value voltage. A current unfolding circuit is configured to control the amount of AC current injected into the utility grid in response to the resultant pulsing current.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Michael Andrew de Rooij, John Stanley Glaser, Oliver Gerhard Mayer, Said Farouk Said El-Barbari