Patents Examined by Jennifer Pitrak
  • Patent number: 11925804
    Abstract: A first medical device for obstructive sleep apnea therapy includes therapy delivery circuitry coupled to a first set of electrodes implantable proximate to a first hypoglossal nerve within a tongue of the patient and configured to deliver a first electrical stimulation signal to the first hypoglossal nerve that causes the tongue of the patient to advance and includes information to communicate to a second medical device implantable within the head or neck of the patient and coupled to a second set of electrodes implantable proximate to a second hypoglossal nerve within the tongue of the patient; and sensing circuitry coupled to the first set of electrodes and configured to receive a second electrical stimulation signal, delivered to the second hypoglossal nerve by the second medical device, that includes information that the second medical device communicates to the first medical device.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: March 12, 2024
    Assignee: Medtronic Xomed, LLC
    Inventors: Jeffrey P. Bodner, Avram Scheiner, Phillip C. Falkner, James Britton Hissong, Walton W. Baxter, III, Richard T. Stone, Robert T. Sandgren, Ryan B. Sefkow, Adam J. Rivard
  • Patent number: 11806517
    Abstract: A circulation assist system measures impeller displacement for use in estimating a blood flow rate related parameter. A circulation assist system includes a blood pump and a controller. The blood pump includes an impeller magnetically supported within a blood flow channel. The blood pump includes one or more sensors configured to generate output indicative of displacement of the impeller along the blood flow channel induced by a blood-flow induced thrust load applied to the impeller. The controller is configured to process the output generated by the one or more sensors to determine the displacement of the impeller along the blood flow channel. The controller is configured to process the determined displacement of the impeller to estimate at least one of the thrust load applied to the impeller, a pressure differential of the blood impelled through the blood flow channel, and a flow rate of blood pumped by the blood pump.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 7, 2023
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Patent number: 11737699
    Abstract: Systems, methods, and computer program product embodiments are disclosed for performing electrophysiology (EP) signal processing. An embodiment includes an electrocardiogram (ECG) circuit board configured to process an ECG signal. The embodiment further includes a plurality of intracardiac (IC) circuit boards, each configured to process a corresponding IC signal. The ECG circuit board and the plurality of IC circuit boards share substantially a same circuit configuration and components. The ECG circuit board further processes the ECG signal using substantially a same path as each IC circuit board uses to process its corresponding IC signal.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: August 29, 2023
    Assignees: BioSig Technologies, Inc., Mayo Foundation for Medical Education and Research
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic, Samuel J. Asirvatham
  • Patent number: 11568994
    Abstract: Improved toilet apparatus and accessories are provided. The smart toilet system comprises components to enhance the functionality and use of existing toilets or new toilets. The smart toilet system comprises components designed to be fit in, on, above, or under a toilet seat, or to replace a toilet seat, bidet components, health monitoring components, ventilation or hygiene components, and communications and/or control components.
    Type: Grant
    Filed: May 31, 2021
    Date of Patent: January 31, 2023
    Inventor: Russell Sebastian Glover, Sr.
  • Patent number: 11534229
    Abstract: A system and method of controlling the application of energy to tissue using measurements of impedance are described. The impedance, correlated to the temperature, may be set at a desired level, such as a percentage of initial impedance. The set impedance may be a function of the initial impedance, the size and spacing of the electrodes, the size of a targeted passageway, and so on. The set impedance may then be entered into a PID algorithm or other control loop algorithm in order to extract a power to be applied to a treatment device.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: December 27, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jerry Jarrard
  • Patent number: 11529105
    Abstract: Disclosed is a method (100) of providing a personalized parameter model of at least part of the physiology of a person (10) carrying a set of sensors (12, 14, 16) with a computer system (20, 50) comprising a processor arrangement (22, 52) for the purpose of updating a biophysical model or digital twin of the person. The method comprises, with said processor arrangement, receiving (103) sensor data from said set of sensors with the communication interface over a defined period of time, the sensor data from each sensor representing a parameter relevant to an actual physiological state of the person; evaluating (105) the received sensor data from each sensor to define the personalized parameter model (3), said model including the evaluated dynamic behaviour of the values of each parameter observed with said sensors over the defined period of time and providing (107) the defined personalized parameter model for updating a digital model (1) of at least part of the anatomy of said person.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: December 20, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Murtaza Bulut, Valentina Lavezzo, Cornelis Petrus Hendriks, Lieke Gertruda Elisabeth Cox
  • Patent number: 11478652
    Abstract: Disclosed herein is an implantable electronic device. In one embodiment, the device has a modular header-feedthru assembly and a housing. The modular header-feedthru assembly has a conductor assembly, a feedthru coupled to the conductor assembly, and a polymer header that is injected molded about the conductor assembly and at least a portion of the feedthru. The housing is welded to the feedthru.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: October 25, 2022
    Assignee: Pacesetter Inc.
    Inventors: Wisit Lim, Reza Imani, Brett Villavicencio, Mitch Goodman
  • Patent number: 11464967
    Abstract: A device for the active fixation of an implantable medical lead includes a housing, a tine assembly, and rotatable shaft. The housing includes a proximal end for connecting to the lead and a distal end opposite the proximal end. The housing defines a housing lumen having a longitudinal axis extending between the proximal end and the distal end. The tine assembly is disposed within the housing lumen. The tine assembly includes at least one tine configured to self-bias from a linear configuration within the housing to a curved configuration outside of the housing. The rotatable shaft extends through the housing lumen. The shaft is configured to engage the tine assembly such that rotation of the shaft transitions the at least one tine between the linear configuration and the curved configuration.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: October 11, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Arthur J. Foster, Benjamin J. Haasl, Linda L. Evert, G. Shantanu Reddy
  • Patent number: 11419521
    Abstract: Disclosed herein are systems comprising sensor devices that may be affixed to a patient and used to perform clinical measurements such as measurements for calculating a BASMI score. A first sensor device is configured to be successively attached to each of a wrist carrier, an ankle carrier, and a headset carrier. The carriers are attached to, or positioned next to, the relevant portion of the patient's body in order to perform particular measurements relating to generating a BASMI score. As the patient performs the routine of motions associated with a particular BASMI measurement, the sensor device records the measurements and communicates the measurements to a user computing device. A second sensor device is configured to be applied to the patient's torso and an additional measurement of patient flexibility taken and communicated to the user computing device. The user computing device generates a BASMI score from the recorded measurements.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: August 23, 2022
    Assignee: Janssen Pharmaceutica NV
    Inventors: Kenneth David Fernandez Prada, Ivan Avila
  • Patent number: 11413451
    Abstract: Devices, systems and methods for reducing migration of leads, catheters and similar devices are provided. In particular, devices, systems and methods are provided for creating a slack anchor which assists in maintaining the lead or catheter in a desired position. In some embodiments, the slack anchor is created within the epidural space. When targeting nerve anatomy within the spinal column or in the vicinity of the epidural space, anchoring within the epidural space allows the associated lead or catheter to be anchored as close to the target therapy site as desired or possible. By anchoring close to the target therapy site, the risk of movement or migration is significantly reduced or eliminated.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: August 16, 2022
    Assignee: St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”)
    Inventors: Eric J. Grigsby, Daniel M. Brounstein, Fred I Linker
  • Patent number: 11413468
    Abstract: Signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some examples, detected events are analyzed to identify changes in detected event amplitudes. When detected event amplitudes are dissimilar from one another, a first set of detection parameters may be invoked, and, when detected event amplitudes are similar to one another, a second set of detection parameters may be invoked. Additional examples determine whether the calculated heart rate is “high” or “low,” and then may select a third set of detection parameters for use when the calculated heart rate is high.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 16, 2022
    Assignee: CAMERON HEALTH, INC.
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Patent number: 11389617
    Abstract: Disclosed is a sleep induction device which exhibits excellent hypnotic effects using light rather than ultrasonic waves or electrical voltages to induce sleep. When the face of a patient is irradiated with diffused ultra narrow band light having a FWHM of 10 nm or less, the specified wavelength of light has excellent hypnotic effects. The sleep induction device is provided with: an ultra narrow band light irradiation means which generates a blue to green ultra narrow band light having a FWHM of 10 nm or less and a peak wavelength range of 430-550 nm; and a diffusion means for reducing the illumination intensity of the light irradiated from the ultra narrow band light irradiation means onto the skin surface of the face to 1-300 lux, and expanding the emission area to the entire face. The green ultra narrow band light has a sleep-inducing effect, and the blue one has a stronger sleep-inducing effect.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: July 19, 2022
    Assignee: Mignon Bell Co., Ltd.
    Inventor: Masahiro Ogasawara
  • Patent number: 11383083
    Abstract: A method of providing a sleep apnea nerve stimulation therapy to a subject may include detecting a respiratory waveform of the subject with a sensor. The sensor may be configured for coupling to the subject. The respiratory waveform may include a plurality of respiratory cycles each corresponding to at least one of a breath and an attempted breath of the subject. The method may also include identifying a breathing pattern within the respiratory waveform over a period of time. The breathing pattern may include a repeating pattern of a plurality of respiratory cycles followed by at least one respiratory cycle corresponding to a disordered breathing event. The method may also include generating a series of stimulation pulses with an implantable nerve stimulator configured for coupling to a hypoglossal nerve of the subject. The series of stimulation pulses may be coordinated with the breathing pattern.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: July 12, 2022
    Assignee: LivaNova USA, Inc.
    Inventor: Stephen L. Bolea
  • Patent number: 11357437
    Abstract: Apparatus, consisting of a catheter that is configured to be inserted into a chamber of a heart and that has one or more electrodes configured to contact myocardial tissue at multiple locations in the chamber. The one or more electrodes receive electrical signals responsive to a conduction wave traveling through the tissue. The apparatus includes a display and a processor that is configured to receive the electrical signals from the catheter and to render to the display, responsively to the electrical signals, a map of the chamber including an indication of local times of occurrence of the conduction wave at the multiple locations. The processor is also configured to calculate, responsively to the local times of occurrence, a velocity of the conduction wave between the locations and to mark on the map one or more areas of the chamber in which the velocity is below a preset threshold.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: June 14, 2022
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Natan Sharon Katz, Benjamin Cohen, Lior Zar, Vincent Alexandre Roger
  • Patent number: 11351361
    Abstract: A system and method are provided for a wireless electrical stimulation. The system generally includes at least two electrical stimulation units. Each electrical stimulation unit includes electrodes connected to the unit. The system also includes a transmitter for remotely, wirelessly controlling each of the electrical stimulation units to selectively apply a time-varying electric potential to the electrodes to provide an electrical stimulation to tissue in electrical contact with the electrodes.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: June 7, 2022
    Assignee: HI-DOW IPHC, INC.
    Inventor: Eric Ye Chen
  • Patent number: 11344734
    Abstract: A hermetically sealed filtered feedthrough assembly attachable to an AIMD includes an insulator hermetically sealing the opening of a ferrule with a gold braze. The ferrule includes a peninsula extending into the ferrule opening and the insulator has a cutout matching the peninsula. A sintered platinum-containing paste hermetically seals at least one via hole extending through the insulator. At least one capacitor is disposed on the device side. An active electrical connection electrically connects the capacitor active metallization to the sintered paste. A ground electrical connection electrically connects the capacitor ground metallization disposed within a capacitor ground passageway to the portion of the gold braze along the ferrule peninsula. The dielectric of the capacitor may be less than 1,000 k.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: May 31, 2022
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Keith W. Seitz, Thomas Marzano, Marc Gregory Martino
  • Patent number: 11344743
    Abstract: A phototherapy device includes a clothing item. Illuminators are secured to the clothing item and arranged to illuminate at least a portion of a patient wearing the clothing item. The illuminators include light emitting diodes (LEDs) mounted on at least one flexible printed circuit board (PCB). A temperature sensor is secured to the clothing item and positioned to measure a temperature proximate to the patient wearing the clothing item. A control circuit is connected to receive the temperature from the temperature sensor and operative to turn off the illuminators responsive to the temperature exceeding a maximum permitted temperature.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: May 31, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Matthew Lukens Behler, David Hunt, Darrin Paul Milner
  • Patent number: 11311344
    Abstract: A surgical device for operating on tissue comprises an end effector, a shaft, and an interface assembly. The shaft comprises an articulation section operable to provide deflection of the end effector relative to the longitudinal axis of the shaft. The interface assembly comprises a plurality of pulleys associated with drive shafts driven by an external system. The pulleys are operable to cause rotation of one or both of the shaft or end effector. The pulleys are further operable to cause articulation of the articulation section. The interface assembly further comprises drive components operable to cause movement of components of the end effector.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: April 26, 2022
    Assignee: Cilag GmbH International
    Inventor: Shailendra K. Parihar
  • Patent number: 11298020
    Abstract: A general-purpose mobile communication device, general-purpose computer user-interface device, and other non-health-related electronic devices with cardiovascular monitoring capability. Various aspects of the present invention may comprise a general-purpose mobile communication device (e.g., a cellular telephone, portable email device, personal digital assistant, etc.) comprising a communication interface module adapted to communicate with a general-purpose communication network, and at least one module operational to acquire cardiac information from a user of the general-purpose mobile communication device. The general-purpose communication device may, for example, comprise a cardiac sensor (e.g., electrodes) disposed on the mobile communication device, which may be utilized to acquire cardiac information during use of the mobile communication device. Various aspects of the present invention may also comprise a non-health related electronic device (e.g.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: April 12, 2022
    Inventor: Gal Markel
  • Patent number: 11291847
    Abstract: Described are systems and methods for preventing, diagnosing, and/or treating one or more medical conditions. The medical conditions can be ocular and/or neurological diseases, disorders, and/or conditions. The systems and methods can employ a microstimulator that is configured to be placed within an anatomical structure of a subject. The microstimulator can be capacitively linked to an external electronic device to provide neuromodulation to a biological target site proximal to the anatomical structure. The microstimulator can include a body and an electrically conductive insert arranged within the body to create a capacitively coupled link with the external electronic device. The electrically conductive insert can receive a power signal from an external electronic device and convert the power signal to deliver a therapy signal to the biological target site.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 5, 2022
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Anthony V. Caparso, Malik Kahook, Naresh Mandava, Noah Lemire, Adam Farwick, Steve Wilder, Steve Risser