Patents Examined by Jennifer Rea
  • Patent number: 8999591
    Abstract: It is possible to prevent excessive power generation of a fuel cell when a failure has occurred. When a start signal is input, a fuel cell system sets an open end voltage of the fuel cell as an initial value of the output voltage of the fuel cell corresponding to the output current zero of the fuel cell. When the failure is detected, the fuel cell system reads out the open end voltage of the preset initial value as the output voltage corresponding to the output current zero and controls the voltage so that the output voltage of the fuel cell coincides with the open end voltage.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 7, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Umayahara, Takeshi Maenaka
  • Patent number: 8802261
    Abstract: Disclosed herein is a battery cell configured such that an electrode assembly of a cathode/separator/anode stack structure is mounted in a changeable cell case in a state in which the electrode assembly is impregnated with an electrolyte, wherein the electrode assembly and the cell case are curved in the same direction on axial vertical sections thereof in a state in which opposite ends of the electrode assembly and opposite ends of the cell case are directed in the same direction about a middle part of the electrode assembly and a middle part of the cell case. When the battery cell is mounted in an electronic device the external shape of which is curved or in an electronic device configured such that a battery mounting region thereof is curved, the tight contact between the battery cell and the electronic device is achieved, thereby maximizing space utilization and thus providing high efficiency.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: August 12, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Eun-Young Goh, Byungjin Choi, Hyang Mok Lee, Hyun-Chul Jung
  • Patent number: 8778532
    Abstract: This lithium electrochemical device includes a stack of layers suitable for constituting a micro-battery deposited on a substrate and encapsulated using a protective cap sealed onto the substrate. It includes two collectors of the current generated by the micro-battery and at least one insulating layer inert as regards lithium. The collectors and the insulating layer or layers are deposited on the substrate. The protective cap is sealed onto the substrate using the layers constituting the current collectors and the insulating layer or layers. The cap has layers of the same nature, positioned in the same order in line with their respective layers deposited on the substrate, so that when the cap is sealed onto the substrate, the respective layers deposited on the cap and on the substrate come into contact with each other to provide the actual seal of the cap on the substrate.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: July 15, 2014
    Assignees: Commissariat à l'Energie Atomique, ST Microelectronics SA
    Inventors: Raphaël Salot, Steve Martin, Sami Oukassi
  • Patent number: 8771857
    Abstract: A redox flow (RF) battery performs charge and discharge by supplying a positive electrode electrolyte and a negative electrode electrolyte to a battery cell. Each of the positive electrode electrolyte and the negative electrode electrolyte contains a vanadium (V) ion as active material. At least one of the positive electrode electrolyte and the negative electrode electrolyte further contains another metal ion, for example, a metal ion such as a manganese ion that exhibits a higher redox potential than a V ion or a metal ion such as a chromium ion that exhibits a lower redox potential than a V ion.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: July 8, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshio Shigematsu, Yongrong Dong, Takahiro Kumamoto
  • Patent number: 8748038
    Abstract: A cathode active material, a cathode including the cathode active material, a lithium battery including the cathode, and a method of preparing the cathode active material, the cathode active material including a lithium-containing metal oxide and an organic material coated on the lithium-containing metal oxide, the organic material including an acrylate or methacrylate organic material including an alkyleneglycol unit.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: June 10, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gue-sung Kim, Won-chang Choi, Kyu-sung Park
  • Patent number: 8628877
    Abstract: The invention relates to a method for making an electric energy storage assembly (1) including a cylindrical coil member (10) having a current collecting section at each end thereof, wherein the method comprises the step of radially coating at least one current collecting section at the end thereof from the center to the periphery of the end of the collecting section. The invention also relates to a device for implementing said method and to a storage assembly obtained by said method.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: January 14, 2014
    Assignee: Batscap
    Inventors: Olivier Caumont, Fabrice Le Driant, Philippe Mando
  • Patent number: 8557411
    Abstract: A secondary battery in which electric connection between an electrode tab of a bare cell and a connection tab of a protective circuit module is performed by welding the electrode tab of the bare cell to the connection tab of the protective circuit module that form a battery pack. A process is provided so that electrode tabs of two or more laminated bare cells are easily and precisely welded to a single, or more, connection tabs by a worker. The welding process is effectively performed and welding strength between the tabs increases.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Deayon Moon
  • Patent number: 8557419
    Abstract: An electrochemical cell battery is disclosed having current collecting terminals acting as security device. The battery includes a plurality of electrochemical cells connected in series or parallel. Each electrochemical cell has a current collecting terminal connecting the positive current collectors together and a current collecting terminal connecting the negative current collectors together. The current collecting terminals each have a folded extension arm for electrically connecting two adjacent electrochemical cells together. The folded extension arms have a shape memory characteristic and are electrically connected together via a welding metal having a fusion temperature Tf of less than 180° C.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: October 15, 2013
    Assignee: Bathium Canada Inc.
    Inventor: Claude Carignan
  • Patent number: 8530074
    Abstract: A battery (1) having at least two serially connected cells (3?, 3?) located one above the other in a stack (2) and having flat electrodes (4, 5), the ends of the stack (2) forming the poles (9, 10) of the battery and the electrodes (4, 5) comprising connecting wires (11, 12) protruding sideways from the stack (2), at least one of the connecting wires (11, 12) of all cells (3?, 3?) being inductively coupled via a common core (13) extending approximately in the longitudinal axis of the stack, and the connecting wires (11, 12) of a first group of cells (3?) being coupled in an inductively opposite fashion to the connecting wires (11, 12) of a second group of cells (3?).
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: September 10, 2013
    Assignee: MAGNA STEYR Battery Systems GmbH & Co OG
    Inventor: Gert Krammer
  • Patent number: 8460823
    Abstract: A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: June 11, 2013
    Assignee: Sandia Corporation
    Inventor: Frank M. Delnick
  • Patent number: 8460817
    Abstract: A manufacturing method for battery pouches enables the subsequent welding together of a stack of battery terminals with an interconnect member to form a battery pack. According to the method, a plurality of pouches containing energy storage medium and having positive terminals and negative terminals extending therefrom are supported side by side in a pouch supporting fixture and lids are lowered to clamp the pouches against movement. The terminals are clamped against movement by clamping the terminals at the bases thereof. Then, the end portions of the terminals are bent by die mechanisms to provide an offset shape in each terminal by which when the pouches are stacked adjacent one another, the positive terminals will contact one another and the negative terminals will contact one another. The clamping and bending are performed in a way that prevents the flow of electrical current between the positive and negative terminals.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: June 11, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Rick F. Rourke, Robert J. Scheuerman
  • Patent number: 8460822
    Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery is provided. The positive electrode active material includes a composite oxide containing lithium and metal M other than lithium, and M contains Ni, Mn, and Co. The molar ratio of Ni to the total of Ni, Mn, and Co is from 0.45 to 0.65, and the molar ratio of Mn to the total of Ni, Mn, and Co is from 0.15 to 0.35. The positive electrode active material has a pressed density under a compression of 60 MPa of 3.3 g/cm3 or more and 4.3 g/cm3 or less. The positive electrode active material has a volume resistivity under a compression of 60 MPa of 100 ?·cm or more and less than 1000 ?·cm.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: June 11, 2013
    Assignee: Panasonic Corporation
    Inventors: Norihiro Yamamoto, Yutaka Kawatate, Hidekazu Hiratsuka, Takahiro Sakamoto
  • Patent number: 8394554
    Abstract: A separator suction device for a fuel cell, having a suction plate and a suction pump. A fuel cell separator is placed on the suction plate. The fuel cell separator has flow paths formed as grooves and ridges on one side of thereof and also has a gasket that is a seal member placed around the flow paths. The suction plate attracts the fuel cell separator by suction. The suction pump sucks the fuel cell separator through suction openings formed in the suction plate. The suction plate has a suction groove which receives the gasket and which has a suction opening formed in it. Further, the suction plate preferably has the suction openings at positions where the ridges of the fuel cell separator are to be placed and is made of an elastic material.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: March 12, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shigemitsu Nomoto
  • Patent number: 8338056
    Abstract: A tubular fuel cell includes an inner current collector, a membrane-electrode assembly, and seal portions provided at the axial end portions of the membrane-electrode assembly, respectively. The membrane-electrode assembly includes an inner catalyst layer provided on the inner current collector, an electrolyte membrane provided on the inner catalyst layer, and an outer catalyst layer provided on the electrolyte membrane. The axial length of the outer catalyst layer is shorter than the axial lengths of the electrolyte membrane and the outer catalyst layer. The axial end face of the outer catalyst layer and the axial end face of the inner catalyst layer are located on the opposite sides of the seal portion in each side of the tubular fuel cell.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: December 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Imanishi, Haruyuki Nakanishi, Shigeaki Murata, Hirokazu Ishimaru, Yuichiro Hama, Yoshihisa Tamura
  • Patent number: 8309273
    Abstract: A polymer electrolyte fuel cell includes: a membrane-electrode assembly (10) having a polymer electrolyte membrane (1) and a pair of electrodes (4, 8) sandwiching a portion of the polymer electrolyte membrane (1) which portion is located inwardly of a peripheral portion of the polymer electrolyte membrane (1); an electrically-conductive first separator (30) disposed to contact the membrane-electrode assembly (10) and formed such that a groove-like first reactant gas channel (37) is formed on one main surface thereof so as to bend; and an electrically-conductive second separator (20) disposed to contact the membrane-electrode assembly (10) and formed such that a groove-like second reactant gas channel (27) is formed on one main surface thereof so as to bend, wherein the first reactant gas channel (27) is formed such that a width of a portion of the first reactant gas channel (27) which portion is formed at least a portion (hereinafter referred to as an uppermost stream portion 8C of the first separator 30) loc
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: November 13, 2012
    Assignee: Panasonic Corporation
    Inventors: Miho Gemba, Yoichiro Tsuji, Shinsuke Takeguchi
  • Patent number: 8298716
    Abstract: In a process of manufacturing a membrane electrode assembly, seal-material flow holes (62a, 62b) in the form of through-holes are formed, separately from manifold holes (16a-16f), in the membrane electrode assembly prior to injection molding. When the membrane electrode assembly is placed in a mold for injection molding, the seal-material flow hole (62a) is located in a cavity (44a). When a seal material is supplied from a supply port (42) formed at a location where the manifold hole (16a) is formed, the seal material that flows toward the upper die (40a) passes the seal-material flow hole (62a) in the cavity (44a), and then flows toward the lower die (40b), so as to reduce the unevenness between the amounts of supply of the seal material to the upper die (40a) and the lower die (40b).
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 30, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tomoharu Sasaoka
  • Patent number: 8293421
    Abstract: The aim of the invention is to improve the accuracy of estimating residual water content in a fuel cell system adopting an intermittent operation mode and to accurately suppress cell voltage reduction due to water accumulation caused by the intermittent operation. The fuel cell system includes: a fuel cell having a cell laminate; an estimating unit for estimating a residual water content distribution in a reactant gas flow channel and a moisture content distribution in an electrolyte membrane in a cell plane of each single cell while taking into consideration water transfer that occurs between an anode electrode and a cathode electrode via the electrolyte membrane; and an operation control unit which changes the content of an intermittent operation when a residual water content in the reactant gas flow channel estimated by the estimating unit is equal to or greater than a predetermined threshold.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Okuyoshi, Masaaki Matsusue, Masashi Toida
  • Patent number: 8288027
    Abstract: An electronic device includes a main body, a control switch, and a sliding block. The main body defines a cavity for receiving a battery. The main body includes a sidewall defining an opening communicating with the cavity. The sidewall further defines a through hole adjacent to the opening. The control switch is engaged in the through hole and rotatable with respect to the sidewall. The control switch includes a protruding portion. The sliding block is movable in the main body. The protruding portion presses against the sliding block and pushes a part of the sliding block into the cavity to block the battery therein when the control switch is rotated to a first position.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: October 16, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Wei Wu, Xin Yang
  • Patent number: 8119271
    Abstract: One embodiment provides an electronic device (for example, a ruggedized laptop computer) which includes a housing, a battery compartment, and a battery cover. The cover can have a thickness sufficient to protect the battery from damage. The cover can include a body, a conductive heat transfer device (for instance a conductive pad), and a convective heat transfer device (for instance, a plurality of fins). The conductive device can be on the inside of the cover and can abut the battery. Together, the conductive heat transfer device, the body of the battery cover, and the convective heat transfer device can form a heat transfer path from the battery to the environment which has a low overall heat transfer coefficient. The convective device can be a plurality of fins recessed into the exterior of the cover. A gusset can be on the interior of the cover and can correspond with the recess.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: February 21, 2012
    Assignee: Augmentix Corporation
    Inventors: Brian Bruce, Ahmad Chamseddine
  • Patent number: 8067108
    Abstract: A hybrid battery comprising at least two nonaqueous electrochemical systems is described. The first cell comprises an anode of an alkaline earth metal or alloy thereof, and the second cell comprises an anode of an alkali metal or alloy thereof. The first cell is preferably an alkaline earth metal/oxyhalide cell, more preferably a calcium/oxyhalide cell or cells. The second cell is preferably an alkali metal alloy/oxyhalide cell, more preferably a lithium alloy/oxyhalide cell or cells. Such a cell combination is particularly useful for power a down-hole well tool. The down-hole tool is powered by the first cell during a surface test and as the tool descends into the well until all of the calcium is discharged. Then, the second cell powers the down-hole tool for the remainder of the down-hole procedure.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 29, 2011
    Assignee: Electrochem Solutions, Inc.
    Inventor: Arden P. Johnson