Patents Examined by Jenny R Wu
  • Patent number: 11014138
    Abstract: A high-frequency heating method for a hot stamping process includes: a first heating step of high-frequency heating a steel sheet, which has an aluminum (Al) coating layer formed on an iron (Fe)-based base material, to a first target temperature at a first heating rate; a second heating step of melting the coating layer by high-frequency heating the steel sheet, which has passed through the first heating step, to a second target temperature at a second heating rate, wherein the second heating rate is lower than the first heating rate; and a third heating step of high-frequency heating the steel sheet, which has passed through the second heating step, to a third target temperature at a third heating rate, wherein the third heating rate is lower than the second heating rate. A compound is formed by a reaction between a material of the coating layer and a material of the base material in the second heating step.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: May 25, 2021
    Assignees: MS AUTOTECH CO., LTD., MYUNGSHIN INDUSTRY CO., LTD.
    Inventors: Sung Yong Park, Jae Sung Kim, Won Ik Eom
  • Patent number: 11008633
    Abstract: A steel containing C: not more than 0.0050%, Si: 0.1-5.0%, Mn: 0.02-3.0%, sol. Al: not more than 0.0050%, P: not more than 0.2%, S: not more than 0.0050%, N: not more than 0.0040%, T. Ca: 0.0010-0.0080%, T. O: not more than 0.0100% and having (T. Ca/T. O) of not less than 0.50 but not more than 2.0 by decarburizing to a C content of not more than 0.0050%, adding Si, decreasing Al as much as possible, and adding Ca is melted to form a slab. The slab is subjected to a hot rolling at a coiling temperature of not lower than 550° C., a cold rolling and a finish annealing, or the slab is subjected to a hot rolling, a hot band annealing at a temperature of 900-1150° C., a cold rolling and a finish annealing to thereby produce a non-oriented electrical steel sheet.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: May 18, 2021
    Assignee: JFE Steel Corporation
    Inventors: Masanori Uesaka, Tadashi Nakanishi, Seiji Nabeshima, Tomoyuki Okubo, Yoshihiko Oda, Hiroaki Nakajima
  • Patent number: 11001907
    Abstract: An object of the present invention is to provide magnesium oxide for an annealing separator which is useful for obtaining grain-oriented electromagnetic steel sheets with excellent magnetic properties and insulating properties. To resolve the above object, an aspect of the present invention resides in magnesium oxide for an annealing separator which has an adhesion water content and a hydration water content each falling in the quadrilateral region defined by the following points a to d as the vertices in a graph representing the adhesion water content-hydration water content relationship: a: adhesion water content: 0.25 mass %, hydration water content: 0.1 mass % b: adhesion water content: 0.60 mass %, hydration water content: 0.1 mass % c: adhesion water content: 0.40 mass %, hydration water content: 6.0 mass % d: adhesion water content: 0.20 mass %, hydration water content: 6.0 mass %.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: May 11, 2021
    Inventors: Tsubasa Migita, Yutaka Hiratsu, Tadasuke Kamei
  • Patent number: 10995382
    Abstract: The invention provides a production method for stabilizers which produces with high productivity in a compact production line, without tempering. The production method for stabilizers of the invention includes: forming a steel bar material containing at least C: 0.15 wt % to 0.39 wt %, Mn, B and Fe into a product shape by bending; and quenching the bent steel bar material in a medium having a heat transfer coefficient higher than or close to that of water.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: May 4, 2021
    Assignee: NHK SPRING CO., LTD.
    Inventors: Shinichiro Kuwatsuka, Yurika Okudaira, Akira Tange, Hideki Okada, Ken Takahashi
  • Patent number: 10995393
    Abstract: When a Si content (mass %) is set to [Si], an Al content (mass %) is set to [Al], and a Mn content (mass %) is set to [Mn], a parameter Q represented by “Q=[Si]+2[Al]?[Mn]” is 2.00 or more, the total mass of S contained in sulfides or oxysulfides of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, or Cd is 40% or more of the total mass of S contained in a non-oriented electrical steel sheet, a {100} crystal orientation intensity is 3.0 or more, a thickness is 0.15 mm to 0.30 mm, and an average crystal grain diameter is 65 ?m to 100 ?m.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: May 4, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takeshi Kubota, Takashi Morohoshi, Masafumi Miyazaki
  • Patent number: 10991494
    Abstract: When a Si content (mass %) is set to [Si], an Al content (mass %) is set to [Al], and a Mn content (mass %) is set to [Mn], a parameter Q represented by “Q=[Si]+2[Al]?[Mn]” is 2.00 or more, the total mass of S contained in sulfides or oxysulfides of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, or Cd is 40% or more of the total mass of S contained in a non-oriented electrical steel sheet, a {100} crystal orientation intensity is 3.0 or more, a thickness is 0.15 mm to 0.30 mm, and an average crystal grain diameter is 65 ?m to 100 ?m.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 27, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takeshi Kubota, Takashi Morohoshi, Masafumi Miyazaki
  • Patent number: 10968503
    Abstract: When a Si content (mass %) is set to [Si], an Al content (mass %) is set to [Al], and a Mn content (mass %) is set to [Mn], a parameter Q represented by “Q=[Si]+2[Al]?[Mn]” is 2.00 or more, the total mass of S contained in sulfides or oxysulfides of Mg, Ca, Sr, Ba, Ce, La, Nd, Pr, Zn, or Cd is 10% or more of the total mass of S contained in a non-oriented electrical steel sheet, a {100} crystal orientation intensity is 3.0 or more, a thickness is 0.15 mm to 0.30 mm, and an average crystal grain diameter is 65 ?m to 100 ?m.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 6, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takeshi Kubota, Takashi Morohoshi, Masafumi Miyazaki
  • Patent number: 10968504
    Abstract: The present disclosure relates to an austenitic stainless alloy including in weight % (wt %): C less than 0.03; Si less than 1.0; Mn less than or equal to 1.2; Cr 26.0 to 30.0; Ni 29.0 to 37.0; Mo 6.1 to 7.1 or (Mo+W/2) 6.1 to 7.1; N 0.25 to 0.36; P less than or equal to 0.04 S less than or equal to 0.03; Cu less than or equal to 0.4; and a balance of Fe and unavoidable impurities. The austenitic stainless alloy has a low content of manganese in combination with a high content of nitrogen. The present disclosure also relates to the use of the austenitic stainless alloy, especially in highly corrosive environments and to products made of thereof.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 6, 2021
    Assignee: Sandvik Intellectual Property AB
    Inventors: Ulf Kivisakk, Karin Antonsson, Peter Stenvall
  • Patent number: 10961611
    Abstract: A high-strength steel having a yield strength at a level of 800 MPa and a method of manufacturing the same, with the components and amounts thereof by weight percentage being: C: 0.06-0.14%, Si: 0.1-0.30%, Mn: 0.8-1.60%, Cr: 0.2-0.70%, Mo: 0.1-0.40%, Ni: 0-0.30%, Nb: 0.01-0.030%, Ti: 0.01-0.030%, V: 0.01-0.05%, B: 0.0005-0.0030%, Al: 0.02-0.06%, Ca: 0.001-0.004%, N: 0.002-0.005%, P?0.02%, S?0.01%, O?0.008%, the balance of Fe and unavoidable impurities; wherein the above elements meet the following relationships: 0.40%<Ceq<0.50%, Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15; 0.7%?Mo+0.8Ni+0.4Cr+6V?1.1%; 3.7?Ti/N?7.0; 1.0?Ca/S?3.0.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: March 30, 2021
    Assignee: Baoshan Iron & Steel Co., Ltd.
    Inventors: Gang Liu, Ana Yang, Zigang Li, Fengming Song
  • Patent number: 10961605
    Abstract: The present invention discloses a method for producing high-purity magnesium by semi-continuous distillation, comprising the following steps of: (1) melting crude magnesium or recycled mixed metal containing magnesium containing various impurities in a melting boiler; (2) feeding the molten crude magnesium into a second boiler by a magnesium liquid delivery pump, and maintaining a temperature of 665° C. to 700° C.; (3) sucking the high-temperature magnesium liquid into a crude distillation column in vacuum by a magnetic liquid suction pipe that is inserted into the intermediate boiler and connected to the crude distillation column. Magnesium is condensed into liquid in the rectification column, then discharged from a liquid seal of the rectification column, and ingoted in a refined magnesium die to obtain high-purity magnesium products.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: March 30, 2021
    Assignees: Wenxi Yuanhua Metallugry Material Co., Ltd
    Inventors: Guangdong Zhu, Junkang Ji, Jiqing Li
  • Patent number: 10961610
    Abstract: Provided according to one embodiment of the present invention are a non-magnetic steel material and a method for manufacturing the same. The steel material comprises 15-27 wt % of manganese, 0.1-1.1 wt % of carbon, 0.05-0.50 wt % of silicon, 0.03 wt % or less (0% exclusive) of phosphorus, 0.01 wt % or less (0% exclusive) of sulfur, 0.050 wt % or less (0% exclusive) of aluminum, 5 wt % or less (0% inclusive) of chromium, 0.01 wt % or less (0% inclusive) of boron, 0.1 wt % or less (0% exclusive) of nitrogen, and a balance amount of Fe and inevitable impurities, has an index of sensitivity of 3.4 or less, the index of sensitivity being represented by the following relational expression (1): [Relational expression 1]—0.451+34.131*P+111.152*Al?799.483*B+0.526*Cr?3.4 (wherein [P], [Al], [B] and [Cr] each mean a wt % of corresponding elements), and contains a microstructure with austenite at an area fraction of 95% or greater therein.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: March 30, 2021
    Assignee: POSCO
    Inventors: Un-Hae Lee, Sung-Kyu Kim, Soon-Gi Lee, Yong-Jin Kim, Hong-Yeol Oh
  • Patent number: 10954728
    Abstract: Various methods of hardbanding an apparatus are described. In one aspect of the invention an improved method of re-applying a hardbanding alloy to worn tool joints of a previously hardbanded drill pipe results in preservation of the metallurgical properties of the drill pipe and preservation of the internal polymer coating that lines the drill pipe. A method for applying hardbanding includes arc welding a consumable metal welding wire to a tool joint having a surface temperature that ranges from about 50° F. to about 170° F. and the arc welding power supply utilizes DC current. The method herein produces a hardbanded tool joint comprising a heat affected zone (HAZ) of a based metal having a Rockwell hardness of 40 Rc or less.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: March 23, 2021
    Assignee: Postle Industries, Inc.
    Inventor: Robert F. Miller
  • Patent number: 10946584
    Abstract: The present disclosure is drawn to a particulate build material for three-dimensional printing. The particulate build material can include a plurality of particulates, wherein individual particulates include a particulate core having a photosensitive coating applied to a surface of the particulate core. The particulate core includes a metal, a ceramic, or both a metal and a ceramic. The photosensitive coating includes a polymer having a photosensitive agent suspended or attached therein.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: March 16, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Ning Ge, James Elmer Abbott, Jr., Steven J Simske, Paul J Benning, Lihua Zhao
  • Patent number: 10941847
    Abstract: Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based macroscale gears. In one embodiment, a method of fabricating a bulk metallic glass-based macroscale gear, where at least either the thickness of the gear is greater than 3 mm or the diameter of the gear is greater than 9 mm, includes: obtaining design parameters of the gear to be formed; selecting a bulk metallic glass from which the gear will be formed based on the obtained design parameters, where the selected bulk metallic glass is characterized by a resistance to standard modes of wear and a resistance to brittle fracture such that a gear can be formed from the selected bulk metallic glass that accords with the obtained design parameters; and fabricating the gear from the selected bulk metallic glass that accords with the obtained design parameters.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: March 9, 2021
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, Andrew Kennett, Kobie T. Boykins
  • Patent number: 10941468
    Abstract: Provided is a high tensile strength steel having a tensile strength of 780 MPa grade or higher which is used for structural members of automobiles, and more specifically relates to high tensile strength steel having excellent bendability and stretch-flangeability while still satisfying characteristics of DP steels of low yield ratio and high ductility, and to a manufacturing method thereof.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: March 9, 2021
    Assignee: POSCO
    Inventors: Yeon-Sang Ahn, Chang-Hyo Seo, Ki-Hyun Park
  • Patent number: 10927428
    Abstract: A hot-dip galvanized steel sheet includes a steel sheet and a hot-dip galvanized layer arranged on the steel sheet, in which the Si content and the Al content by mass % of components of the steel sheet satisfy a relationship 0.5<Si+Al<1.0, and a metallographic structure of the steel sheet satisfies a relationship of {(n2)2/3×d2}/{(n1)2/3×d1}×ln(H2/H1)<0.3 when the n1 is the number of a MnS of a surface portion of the steel sheet, the d1 ?m is an average equivalent circle diameter of the MnS in the surface portion of the steel sheet, the H1 GPa is a hardness of a martensite of the surface portion of the steel sheet, the n2 is the number of the MnS of a center portion of the steel sheet, the d2 ?m is an average equivalent circle diameter of the MnS in the center portion of the steel sheet, and the H2 GPa is the hardness of the martensite of the center portion of the steel sheet.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: February 23, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Toshiki Nonaka, Toshio Ogawa, Nobuhiro Fujita
  • Patent number: 10927438
    Abstract: Provided is an Fe—Ni—Cr alloy that has excellent surface characteristics and enables formation of a blackened coating having excellent blackening characteristics and peeling resistance. The Fe—Ni—Cr alloy has a chemical composition containing, by mass %, C, Si, Mn, P, S, Cr, Ni, Mo, Co, Cu, N, Ti, Al, O, and H, the balance being Fe and inevitable impurities, and satisfying formulae (1) to (4): (1) T1=11×[% N]+0.1; (2) T2=?39×[% N]?1.0; (3) A1=7.5×[% N]+0.1; (4) A2=?42.5×[% N]+1.0, where [% M] represents content (mass %) of element M in the alloy, and T1, T2, A1, and A2 satisfy relationships T1<[% Ti]<T2 and A1<[% A1]<A2.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: February 23, 2021
    Assignee: Nippon Yakin Kogyo Co., Ltd.
    Inventors: Kazuhiro Yamakawa, Shigeru Hirata, Kun Wang, Hidekazu Todoroki
  • Patent number: 10907685
    Abstract: A sintered bearing (1) contains as main components iron, copper, a metal having a lower melting point than copper, and a solid lubricant. The sintered bearing (1) includes a surface layer (S1) and a base part (S2). The surface layer (S1) is formed mainly of flat copper powder arranged so as to be thinned in a thickness direction. In the base part (S2), an iron structure (33) and a copper structure (31c) brought into contact with the iron structure are formed of partially diffusion-alloyed powder in which copper powder is partially diffused in iron powder. Thus, a sintered bearing which achieves a balance between wear resistance of a bearing surface and strength of the bearing, and realizes low cost can be provided.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 2, 2021
    Assignee: NTN CORPORATION
    Inventors: Yoshinori Ito, Tomonori Yamashita
  • Patent number: 10907231
    Abstract: An oriented electrical steel sheet according to an exemplary embodiment of the present invention includes Si: 2.0 to 7.0%, C: 0.005% or less (excluding 0%), Al: 0.05% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.005% or less (excluding 0%), a content of each of Ba and Y or a sum thereof: 0.001 to 0.3%, and Fe and other unavoidable impurities as a balance by wt %.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: February 2, 2021
    Assignee: POSCO
    Inventors: Hyung Don Joo, Hyung Ki Park, Jin Wook Seo, Sang Woo Lee
  • Patent number: 10858717
    Abstract: A high strength steel sheet having excellent surface quality and formability with a tensile strength of 980 MPa or more and a TS-El balance of 30000 MPa % or more is provided. A high strength steel sheet comprises: a chemical composition containing C: 0.08% to 0.30%, Si: 2.0% or less, Mn: more than 3.0% and 10.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 1.5% or less, Ti: 0.010% to 0.300%, and N: 0.0020% to 0.0100% in a range satisfying 1.1?(Ti+Mn1/2/400)/(0.01+5N)?6.0; and a microstructure including a retained austenite phase and a ferrite phase, wherein a ratio ?Mn/?Mn of an average Mn concentration (?Mn) of the retained austenite phase to an average Mn concentration (?Mn) of the ferrite phase is 1.5 or more.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: December 8, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Kenji Tsuzumi, Yoshiyasu Kawasaki, Yuji Miki