Patents Examined by Jerry Blevins
  • Patent number: 9285108
    Abstract: A system for cooling various components of an electronic display. One or more heat-generating components are preferably placed in thermal communication with a plate and ribs. One or more fans are placed to draw cooling air along the ribs to remove the heat removed from the component. Some embodiments may place the electronic image assembly in thermal communication with the ribs to remove heat from the electronic image assembly. Exemplary embodiments have power modules and the electronic image assembly in thermal communication with the ribs. Conductive thermal communication is established between the ribs and the components in the exemplary embodiments.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: March 15, 2016
    Assignee: MANUFACTURING RESOURCES INTERNATIONAL, INC.
    Inventors: William Dunn, Ware Bedell, Tim Hubbard
  • Patent number: 9279940
    Abstract: An optical fiber adapter includes a main body, two hook members, a hollow middle member and an elastic shutter member. The hook member has two hooks and two opposing walls that define a passage. The main body has an access opening on a first wall thereof for the two hook members and middle member to place within the passage of the main body. The middle member is positioned between the two hook members when the hook members and middle member are placed in the passage of the main body. The shutter member includes a fixing portion, a shutter plate and a connecting portion. The fixing portion is positioned in the accommodation recess formed on the first wall of the first hook member. The connecting portion connects the fixing portion with the shutter plate. The shutter plate extends from the connecting portion and into the passage.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: March 8, 2016
    Assignees: Protai Photonic Co., Ltd., Senko Advanced Components, Inc.
    Inventors: Tomoyuki Mamiya, Jyh-Cherng Yang, Yu-Kai Chen
  • Patent number: 9274355
    Abstract: A low-voltage optical modulator includes a substrate, a waveguide, a first pair of electrodes, and a second pair of electrodes. The waveguide is diffused into the top surface of the substrate, into a major branch and a parallel modulating branch. A structure of the first and second pair of electrodes are same. The first pair of electrodes includes a first and a second electrode parallel to each other. The first electrode is formed on the modulating branch and the second electrode is opposite to the modulating branch and away from the major branch. The second pair of electrodes includes parallel third and fourth electrodes. The third electrode is formed on the major branch. The fourth electrode is opposite to the major branch and away from the modulating branch.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 1, 2016
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Hsin-Shun Huang
  • Patent number: 9268107
    Abstract: One example relates to an optical engine comprising an optical waveguide. The optical waveguide can comprise a total internal reflection (TIR) edge to change direction of an optical light beam to an angle parallel to a top surface and a bottom surface of the optical waveguide. The optical waveguide can also comprise a plurality of aligning holes extending from the top surface to the bottom surface of the optical waveguide. The optical engine can comprise a substantially transparent slab underlying the optical waveguide. The slab can also comprise a micro lens to collimate the optical light beam. The slab can further comprise a plurality of aligning pins extending perpendicular from a top surface and bottom surface of the slab. Each of the plurality of aligning pins can extend through a respective one of the plurality of aligning holes.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 23, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Michael Renne Ty Tan, Sagi Varghese Mathai, Wayne Victor Sorin, Arlen L Roesner, Glenn C. Simon
  • Patent number: 9268104
    Abstract: An electronic device including a casing, an optical fiber connector and a protecting cover is provided. The case includes an opening and a first engaging member. The optical fiber connector is disposed in the opening. The protecting cover is disposed at the opening and includes a second engaging member movably engaged with the first engaging member so that the optical fiber connector is exposed or shielded by the protecting cover. An optical fiber connector having a connecting port, a first engaging member and a protecting cover is further provided. The first engaging member is disposed besides the connecting port. A second engaging member of the protecting cover is movably disposed at the first engaging member so that the protecting cover exposes or shields the connecting port. The protecting cover is capable of fixing an optical fiber cable and shielding a light emitted from the optical fiber connector.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: February 23, 2016
    Assignee: ASKEY COMPUTER CORP.
    Inventor: Tzu-Huang Huang
  • Patent number: 9261651
    Abstract: Ferrule assemblies having at least one coded magnetic array are disclosed. In one embodiment, a ferrule assembly includes a ferrule body having a coupling surface and a coded magnetic array having a plurality of magnetic regions. The coded magnetic array may be located within the coupling surface. The ferrule assembly further includes a lens component located within the ferrule body. The lens component may have a facet at the coupling surface of the ferrule body at a predetermined angle. In another embodiment, a translating ferrule assembly includes an optical interface and a coded magnetic array, and is configured to translate within a connector housing of an optical connector when coupled to an electronics device. Optical couplings having a coded magnetic array and sockets for receiving a connector are also disclosed.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: February 16, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Seldon David Benjamin, Jeffery Alan DeMeritt, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 9250390
    Abstract: An optical delivery waveguide for a material laser processing system includes a small lens at an output end of the delivery waveguide, transforming laser beam divergence inside the waveguide into a spot size after the lens. By varying the input convergence angle and/or launch angle of the laser beam launched into the waveguide, the output spot size can be continuously varied, thus enabling a continuous and real-time laser spot size adjustment on the workpiece, without having to replace the delivery waveguide or a process head. A divergence of the laser beam can also be adjusted dynamically and in concert with the spot size.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 2, 2016
    Assignees: Lumentum Operations LLC, Amada Holdings Co., Ltd.
    Inventors: Martin H. Muendel, Dahv Kliner
  • Patent number: 9252880
    Abstract: Described herein is a system for transmitting an optical signal from a first location to a second location. The system may include first and second mounting fixtures, a reception module, an optical fiber, and a transmission module. The first fixture may define at least a first cavity and a first aperture at the bottom of the cavity. The reception module may be disposed in the cavity, and include a reflector for receiving the optical signal from a first direction through the first aperture and redirecting the optical signal in another direction. The optical fiber may be for receiving the optical signal from the reflector. The second fixture may define at least a second cavity and a second aperture on the side of the cavity. The transmission module may be disposed in the second cavity and direct the optical signal from the optical fiber through the second aperture.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: February 2, 2016
    Assignee: ECHOSTAR TECHNOLOGIES L.L.C.
    Inventors: Eric Berg, Svitlana Trygubova
  • Patent number: 9250411
    Abstract: Cables are constructed with embedded discontinuities in the cable jacket that allow the jacket to be torn to provide access to the cable core. The discontinuities can be longitudinally extending strips of polymer material coextruded in the cable jacket.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: February 2, 2016
    Assignee: CCS TECHNOLOGY, INC.
    Inventors: George Cornelius Abernathy, David Wesley Chiasson, Randall Dwaine Tuttle
  • Patent number: 9244310
    Abstract: A liquid crystal display device includes an array substrate, an opposite substrate and a liquid crystal display layer. The array substrate includes a pixel electrode and a lower reactive mesogen layer. The pixel electrode includes a plurality of slit portions disposed on a plurality of domains in different directions. The lower reactive mesogen layer is disposed on the pixel electrode to induce an inclined direction of liquid crystal molecules. The opposite substrate includes an upper substrate. An upper reactive mesogen layer is disposed on a common electrode of the opposite substrate. The liquid crystal layer includes liquid crystal molecules arranged to have a pretilt angle between a surface of the lower reactive mesogen layer and a surface of the upper reactive mesogen layer.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: January 26, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Myeong-Ha Kye, Jun-Hyup Lee, Jae-Jin Lyu, Seung-Beom Park, Jong-Ho Son, Ji-Won Sohn, Hoon Kim, Min-Goo Seok, Jun-Hee Na, Min-Jae Kim, Su-Han Woo
  • Patent number: 9235012
    Abstract: An optical communication module includes an optical transmitter, an optical coupling lens, and an optical fiber. The optical coupling lens includes a first surface, a second surface, a reflection surface, a first lens unit, and a second lens unit. An included angle between the first surface and the second surface is 82 degrees. An included angle between the first surface and the reflection surface is 45 degrees. The first lens unit is positioned on the first surface. The second lens unit is positioned on the second surface. The optical transmitter is positioned towards the first surface and aligned with the first lens unit. An optical fiber is positioned towards the second surface and aligned with the second lens unit.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: January 12, 2016
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yi Hung, I-Thun Lin
  • Patent number: 9235016
    Abstract: The electronic device with cable includes a circuit substrate provided with a heat generating element mounted thereon, an electrical connector connected to one end of the circuit substrate, a cable that is connected to the other end of the circuit substrate, heat conducting sheets and disposed in the circuit substrate, a first metal housing including an accommodation portion accommodating the electrical connector and a pair of wall portions communicating with the accommodation portion, a second metal housing fitted to the first metal housing so as to cover a one-side opening of the pair of wall portions, and a third metal housing fitted to the second metal housing so as to cover the other-side opening of the pair of wall portions. The cable and the first metal housing are thermally connected to each other.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: January 12, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hajime Arao, Toshihisa Yokochi
  • Patent number: 9235001
    Abstract: An optical device includes: an optical integrated circuit chip that comprises an optical integrated circuit and an optical interface connected thereto; an electronic circuit chip that comprises an electronic circuit connected to the optical integrated circuit; a through wiring board that comprises a through wiring connected to the electronic circuit chip; a first bump that connects the optical integrated circuit and the electronic circuit between the optical integrated circuit chip and the electronic circuit chip; a second bump that connects the electronic circuit and the through wiring between the electronic circuit chip and the through wiring board; and a third bump connected to an end portion on an opposite side to the second bump of the through wiring. The optical integrated circuit chip and the through wiring board are disposed on a side of a first main surface of the electronic circuit chip.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: January 12, 2016
    Assignee: FUJITSU LIMITED
    Inventors: Shigeaki Sekiguchi, Nobuhiro Imaizumi, Toshiya Akamatsu, Shinji Tadaki, Akinori Hayakawa
  • Patent number: 9229160
    Abstract: An easily producible optical fiber preform which is drawn to an optical fiber having a core containing a sufficient concentration of alkali metal is provided. An optical fiber preform 10 is composed of silica-based glass and includes a core portion 20 and a cladding portion 30. The core portion 20 includes a first core portion 21 including a central axis and a second core portion 22 disposed on the perimeter of the first core portion 21. The cladding portion 30 includes a first cladding portion 31 disposed on the perimeter of the second core portion 22 and a second cladding portion 32 disposed on the perimeter of the first cladding portion 31. The core portion 20 contains an alkali metal at an average concentration of 5 atomic ppm or more. The concentration of the OH group in the perimeter portion of the first cladding portion 31 is 200 mol ppm or more.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: January 5, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshiaki Tamura, Tetsuya Haruna, Masaaki Hirano
  • Patent number: 9223083
    Abstract: A multicore fiber includes a plurality of cores, a cladding that encloses the plurality of the cores, and a marker disposed in the cladding. The plurality of the cores is arranged and disposed on a linear line passed through the center of the cladding. The marker is disposed along the length direction of the cladding on a portion on which the marker does not overlap the cores in a first direction in which the plurality of the cores is arranged on the linear line and does not overlap the core in a second direction orthogonal to the first direction.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: December 29, 2015
    Assignee: FUJIKURA LTD.
    Inventors: Itaru Ishida, Shoichiro Matsuo
  • Patent number: 9213137
    Abstract: Semiconductor devices and methods for fabricating semiconductor devices are provided. In one example, a method for fabricating a semiconductor device includes etching a waveguide layer in a detector region of a semiconductor substrate to form a recessed waveguide layer section. A ridge structure germanium (Ge) photodetector is formed overlying a portion of the recessed waveguide layer section.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: December 15, 2015
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Purakh Raj Verma, Kah-Wee Ang
  • Patent number: 9201201
    Abstract: Fiber trays and fiber optic modules and assemblies using the same are disclosed, wherein optical fibers are secured to a fiber tray that is then secured to a body of the fiber module. The body defines a plurality of lenses that reflect light using a total-internal-reflection surface to direct light to active optical components. The fiber tray is secured to the body such that the plurality of optical fibers may be secured within fiber support features of the body that align ends of the optical fibers to the lenses defined by the body. Optical-electrical connectors employing such two-piece fiber optic modules are also disclosed, as well as methods of processing a plurality of optical fibers using a fiber tray.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 1, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Mathieu Charbonneau-Lefort, Michael de Jong, Dennis Michael Knecht, Craig Alan Strause, Thomas Theuerkorn
  • Patent number: 9203523
    Abstract: The present invention relates to a flexible method of provide chips for optical interconnect with different number of channels.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 1, 2015
    Assignee: MELLANOX TECHNOLOGIES DENMARK APS
    Inventors: Steen Bak Christensen, Thorkild Franck
  • Patent number: 9195112
    Abstract: An electro-optic modulator for the modulation of optical radiation of a predetermined wavelength, the electro-optic modulator having at least one optical resonator in which a standing optical wave can be formed for the predetermined wavelength. In the resonator, at least two doped semiconductor sections—as seen in the longitudinal direction of the resonator —are arranged at a distance from one another, and the at least two doped semiconductor sections respectively lie locally at an intensity minimum of the standing optical wave.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 24, 2015
    Assignees: TECHNISCHE UNIVERSITÄT BERLIN, IHP GMBH—INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS
    Inventors: Stefan Meister, Aws Al-Saadi, Hans Joachim Eichler, Bulent Franke, Lars Zimmermann, Bernd Tillack
  • Patent number: 9195012
    Abstract: An optical fiber connector includes a first main body, at least one optical fiber and a fastening element. The first main body includes a first surface and a second surface. A receiving recess is defined in the first surface; at least one recess is defined on the bottom surface of the receiving recess. The optical fibers are fastened in the recesses. The fastening element is received in the receiving recess, and has a third surface and a fourth surface. At least one restricting recess is defined on the third surface and through the fourth surface. At least one orientating hole is defined on the fastening element. The orientating pole and the orientating hole are coordinating with each other to fasten the fastening element in the receiving recess, therefore make the restricting recess and the corresponding orientating recess coordinate with each other to fasten the corresponding optical fiber.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: November 24, 2015
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Po-Wei Huang