Patents Examined by Jerry Lorengo
  • Patent number: 8211817
    Abstract: Fused silica glass having an internal transmittance of UV with 245 nm wavelength, being at least 95% at 10 mm thickness, a OH content of not larger than 5 ppm, and a content of Li, Na, K, Mg, Ca and Cu each being smaller than 0.1 ppm. Preferably the glass has a viscosity coefficient at 1215° C. of at least 1011.5 Pa·s; and a Cu ion diffusion coefficient of not larger than 1×10?10 cm2/sec in a depth range of greater than 20 ?m up to 100 ?m, from the surface, when leaving to stand at 1050° C. in air for 24 hours. The glass is made by cristobalitizing powdery silica raw material; then, fusing the cristobalitized silica material in a non-reducing atmosphere. The glass exhibits a high transmittance of ultraviolet, visible and infrared rays, has high purity and heat resistance, and exhibits a reduced diffusion rate of metal impurities, therefore, it is suitable for various optical goods, semiconductor-production apparatus members, and liquid crystal display production apparatus members.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: July 3, 2012
    Assignees: Tosoh Corporation, Tosoh SGM Corporation
    Inventors: Kazuyoshi Arai, Tsutomu Takahata, Shinkichi Hasimoto, Masahito Uchida, Nobusuke Yamada, Yoshinori Harada, Hideharu Horikoshi
  • Patent number: 8211594
    Abstract: A composition comprising an admixture of at least platinum particles and metal nanoparticles of metal that, when in admixture with the platinum particles, beneficially alters the characteristics of the platinum, including metals selected from one or more of the metals in groups 3-16, lanthanides, combinations thereof, and/or alloys thereof. The composition could be used to form an ink that further comprises an ionically conductive material, such as a polymer, capable of ionic networking throughout the ink composition so as to create a substantially structurally coherent mass without significantly impacting the reactivity of a substantial number of the nanoparticles. In one application, the ink may be used to form a catalyst whereby the ink is applied to an electrically conductive backing material, such as carbon paper or fibers.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 3, 2012
    Assignee: QuantumSphere, Inc.
    Inventors: Kimberly McGrath, R. Douglas Carpenter
  • Patent number: 8206595
    Abstract: The present invention provides a method of recovering silver safely and efficiently from a chloride or bromide bath containing various metals. Specifically, a method of recovering silver from a hydrochloric acid solution containing alkali and/or alkaline earth metal chloride, silver, copper and iron ions, comprising the steps of: (1) bringing the solution into contact with a strong-base anion-exchange resin to adsorb silver, copper, and iron on the anion-exchange resin; (2) then washing the anion-exchange resin with water to remove the adsorbed copper and iron; and (3) then bringing the ion-exchange resin into contact with a hydrochloric acid solution to elute the adsorbed silver, is provided.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: June 26, 2012
    Assignee: JX Nippon Mining & Metals
    Inventors: Hiroshi Hiai, Yoshifumi Abe
  • Patent number: 8206682
    Abstract: A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: June 26, 2012
    Inventors: Lawrence Shore, Ramail Matlin, Robert Heinz
  • Patent number: 8206472
    Abstract: There is provided a fixed abrasive wire having abrasives fixed thereon with a superior fixing strength. The abrasives are fixed on the wire by electroplating in which the wire is subjected to a degreasing step, an acid cleaning step, a rinsing step and an electroplating step sequentially. A plating liquid used in the electroplating step contains a nickel-containing organic acid or a nickel-containing inorganic acid, a leveling agent, and the abrasives. It is a feature that a plated coat being over the top of each of the abrasives has a smaller thickness than a theoretical value.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: June 26, 2012
    Assignee: Japan Fine Steel Co., Ltd.
    Inventors: Yasuhiro Tani, Yukinobu Tokunaga, Kazumasa Tsuchihashi
  • Patent number: 8206062
    Abstract: A method for in-situ reduction of contaminants in soil.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: June 26, 2012
    Assignee: VeruTEK Technologies, Inc.
    Inventors: George E. Hoag, John Collins
  • Patent number: 8206679
    Abstract: A method of producing a Ca—La—F based transparent ceramic, including: mixing CaF2 particles and LaF3 particles that are prepared separately from the CaF2 particles to form a mixed body of particles, and sintering the mixed body of particles and making the mixed body transparent, thereby producing a transparent ceramic.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: June 26, 2012
    Assignee: Nikon Corporation
    Inventor: Hitoshi Ishizawa
  • Patent number: 8206473
    Abstract: An abrasive composition including vitreous binding material; abrasive material; and a dimensional stabilizing additive (DSA), present in an amount that is from about 1 to about 40 volume percent of the abrasive composition, wherein the dimensionally stabilizing additive is inert to the binding material, and has a Mohs hardness of between 4 and 9, and wherein the abrasive composition does not include hollow sphere fillers. Also included is a method of making an abrasive articles, articles formed thereby; and articles formed from the abrasive compositions.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: June 26, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Gary Michael Huzinec, William Francis Koval
  • Patent number: 8202812
    Abstract: This invention relates to lead free, cadmium free, bismuth free low melting high durability glass and enamel compositions. The compositions comprise silica, zinc, titanium, and boron oxide based glass frits. The resulting compositions can be used to decorate and protect automotive, beverage, architectural, pharmaceutical and other glass substrates.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: June 19, 2012
    Assignee: Ferro Corporation
    Inventor: George E. Sakoske
  • Patent number: 8202666
    Abstract: A unit cell assembly, stacked in a plurality to form a fuel cell, includes: a separator; a unit cell constituent member disposed at a first region on one face of the separator; a seal member which is formed of an elastic member and bonded to a second region surrounding the first region on one face of the separator, and which is integrated with at least part of a peripheral edge of the unit cell constituent member; and a first insulating portion having insulating properties and provided at least on part of a peripheral edge of the separator.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: June 19, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaaki Kanao, Kenji Sato, Hiroshi Nishiyama
  • Patent number: 8202659
    Abstract: A method for producing sodium carbonate monohydrate, according to which an aqueous sodium chloride solution (5) is electrolyzed in a membrane-type cell (1) from which an aqueous sodium hydroxide solution (9) is collected, and carbonated by direct contact with carbon dioxide (15) to form a slurry of crystals of a sodium carbonate monohydrate (16), and the slurry or its mother liquor is evaporated (3) to collect sodium carbonate monohydrate (18).
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: June 19, 2012
    Assignee: Solvay (Societe Anonyme)
    Inventors: Francis Coustry, Michel Hanse
  • Patent number: 8197711
    Abstract: The transparent polycrystalline optoceramic has single grains with a symmetric cubic crystal structure and at least one optically active center. The optoceramic has the following formula: A2+xByDzE7, wherein 0?x?1.1, 0?y?3, 0?z?1.6, and 3x+4y+5z=8, and wherein A is at least one trivalent rare earth cation, B is at least one tetravalent cation, D is at least one pentavalent cation, and E is at least one divalent anion. The method of making the optoceramic includes preparing a powder mixture from starting materials, pre-sintering, sintering and then compressing to form the optoceramic. Scintillator media made from the optoceramic are also described.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: June 12, 2012
    Assignee: Schott AG
    Inventors: Ulrich Peuchert, Yvonne Menke
  • Patent number: 8197584
    Abstract: A curable pigment inkjet ink set includes a cyan inkjet ink, a yellow inkjet ink, and a magenta inkjet ink, wherein the yellow inkjet ink having ABS(Y)momo <5 and ABS(Y)400-500>60 includes one or more yellow pigments; the cyan inkjet ink includes one or more ?-copper phthalocyanine pigments; and the magenta inkjet ink contains a mixed crystal including a first quinachdone and a second quinacridone in a ratio of the first quinacridone over the second quinacridone such that ABS(M)500-530>20 and ABS(M)500-600 >60. ABS(Y)500-530 represents the absorbance of the yellow inkjet ink between 500 and 530 nm; ABS(M)500-530 represents the absorbance of the magenta inkjet ink between 500 and 530 nm; ABS(Y)400-500 represents the absorbance ot the yellow inkjet ink between 400 and 500 nm; and ABS(M)500-600 represents the absorbance of the magenta inkjet ink between 500 and 600 nm.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: June 12, 2012
    Assignee: Agfa Graphics NV
    Inventors: Roland Claes, Geert Deroover
  • Patent number: 8197958
    Abstract: An electric battery includes a plurality of electric energy generators and a system for mechanical and thermal conditioning of the elements, which system includes a one-piece structural body in which housings are formed in order to each receive an element, in which the housings have at least one internal area of contact with an element, and the contact area is continuous and has a shape suitable for ensuring contact between the area and the periphery of the element, in which the body also includes chambers that each extend around a contact area, and which system also includes a device enabling a thermal conditioning fluid to circulate in the chambers so as to ensure the thermal conditioning of the elements.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: June 12, 2012
    Assignee: Dow Kokam France SAS
    Inventors: Fabien Gaben, Claude Beignet, Alain Douarre
  • Patent number: 8193111
    Abstract: One exemplary embodiment can be a process for desorbing an adsorbent bed. The process can include passing a desorbent stream through the adsorbent bed to remove at least one of a nitrile compound and an oxygenate compound. Generally, the desorbent stream after desorbing is combined with a feed stream for an alkylation zone after a selective hydrogenation zone.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: June 5, 2012
    Assignee: UOP LLC
    Inventors: Gavin P. Towler, Charles P. Luebke, David N. Myers, Steven L. Krupa
  • Patent number: 8192892
    Abstract: A phosphorous containing benzoxazine-based monomer, a polymer thereof, an electrode for a fuel cell including the same and an electrolyte membrane for a fuel cell, and a fuel cell including the same.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: June 5, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seongwoo Choi, Jungock Park, Wonmok Lee
  • Patent number: 8192544
    Abstract: Disclosed herein is an apparatus for manufacturing a polycrystalline silicon ingot for solar batteries having a door control device using a hinge. The apparatus includes a vacuum chamber, a crucible, a susceptor which surrounds the crucible, a heater which heats the crucible, and an insulation plate which is disposed below the susceptor and has an opening therein. The apparatus further includes a cooling plate which moves upwards through the opening of the insulation plate and comes into close contact with or approaches the lower end of the susceptor, a cooling plate moving unit which actuates the cooling plate, a temperature sensor which measures the temperature of the crucible, and a control unit which controls the temperature in the crucible and the cooling plate moving unit. Furthermore, a door is provided on the insulation plate to open or close the opening of the insulation plate. The hinge is provided between the door and the insulation plate.
    Type: Grant
    Filed: October 4, 2008
    Date of Patent: June 5, 2012
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Jong-Won Gil, Sang-Jin Moon, Won-Wook So
  • Patent number: 8192880
    Abstract: A fuel cell system of the invention includes, a fuel cell, a water reservoir configured to accumulate water discharged from the fuel cells, and a status estimator configured to estimate a status of the water reservoir based on a stated of the fuel cell.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: June 5, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoki Kanie, Masahiro Okuyoshi
  • Patent number: 8193113
    Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 5, 2012
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Matthew John Andrus
  • Patent number: 8192858
    Abstract: A method for forming an electrode plate for a battery includes the steps of (a) forming mixture layers on a current collector, lateral end surfaces of the mixture layers forming a continuous plane with at least one lateral end surface of the current collector; and (b) forming a porous film on the mixture layers.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: June 5, 2012
    Assignee: Panasonic Corporation
    Inventors: Hideaki Fujita, Yutaka Wakai